Evolution of the Rheic Ocean
R. Damian NanceGabriel Gutiérrez‐AlonsoJ. Duncan KeppieUlf LinnemannJ. Brendan MurphyCecilio QuesadaRob StrachanNigel Woodcock
601
Citation
260
Reference
10
Related Paper
Citation Trend
Keywords:
Laurentia
Pangaea
Devonian
Baltica
Orogeny
Passive margin
Recent advances in our understanding of Palaeozoic tectonics, and in the precise dating of tectonic events require exact definitions of terminology. The Caledonian Orogeny is here redefined to include all the Cambrian, Ordovician, Silurian and Devonian tectonic events associated with the development and closure of those parts of the Iapetus Ocean, which were situated between Laurentia (to the NW) and Baltica and Avalonia (to the SE and east). We suggest that the term ‘Caledonian Orogeny’ be restricted in this geographic sense, but that (as in modern usage) it continues to encompass a series of tectonic, or orogenic, phases (related to arc–arc, arc–continent and continent–continent collisions as Iapetus was closing). Many of these phases have been named; these and many more unnamed events are defined as orogenic phases (local components) of the Caledonian Orogeny. Some of these phases were synchronous over long distances, whereas others were diachronous. The whole Caledonian Orogeny occupied a time interval of around 200 Ma. Thus the term Caledonian should not be used to indicate age.
Orogeny
Baltica
Laurentia
Devonian
Diachronous
Cite
Citations (240)
ABSTRACT Close geochronological correspondence of Mesoproterozoic extension‐related magmatism and comparable tectonic and geochronological evolution of the Grenville and Svecononvegian orogens suggests that the Laurentian and Baltic Shields could have been joined during the Mesoproterozoic and did not separate until after the Grenvillian‐Sveconorwegian orogeny. The combined Grenville‐Svecononvegian orogen is here interpreted to have formed during the collision of coherent Laurentia‐Baltica with an unknown craton, which is in contrast to earlier explanations that favour a late‐Mesoproterozoic rotation between Laurentia and Baltica followed by collision of these two cratons with each other.
Laurentia
Baltica
Orogeny
Rodinia
Baltic Shield
Cite
Citations (35)
Laurentia
Rodinia
Baltica
Supercontinent
Pangaea
Orogeny
Cite
Citations (0)
Laurentia
Baltica
Apparent polar wander
Rodinia
Baltic Shield
Cite
Citations (297)
Abstract Recent cataloguing of collections of Late Ordovician erratic sponges from Gotland (Sweden) in Swedish museums has revealed the presence of Palaeomanon cratera (Roemer, 1848), previously known only from Silurian strata in Tennessee (USA) and the Northwest Territories (Canada). The species forms part of a rich sponge assemblage occurring on Gotland, representing one of three associations in north and northwest Europe, and originating from unknown source areas in Baltica. Palynomorphs extracted from adhering sediment document a Late Ordovician (Ashgill) age; thus, they are the oldest representatives of the species known to date. Naturally, this has implications for the palaeobiogeography of Palaeomanon, in relation to faunal exchange between Baltica and Laurentia; a possible migration from Baltica to Laurentia is discussed. Keywords: PoriferaAstylospongiidaeOrdovicianerraticsBalticaLaurentiaGotlandpalaeo-biogeography
Baltica
Laurentia
Assemblage (archaeology)
Cite
Citations (1)
The Variscan belt of western Europe is part of a large Palaeozoic mountain system, 1000 km broad and 8000 km long, which extended from the Caucasus to the Appalachian and Ouachita mountains of northern America at the end of the Carboniferous. This system, built between 480 and 250 Ma, resulted from the diachronic collision of two continents: Laurentia–Baltica to the NW and Gondwana to the SE. Between these two continents, small, intermediate continental plates separated by oceanic sutures mainly have been defined (based on palaeomagnetism) as Avalonia and Armorica. They are generally assumed to have been detached from Gondwana during the early Ordovician and docked to Laurentia and Baltica before the Carboniferous collision between Gondwana and Laurentia–Baltica. Palaeomagnetic and palaeobiostratigraphic methods allow two main oceanic basins to be distinguished: the Iapetus ocean between Avalonia and Laurentia and between Laurentia and Baltica, with a lateral branch (Tornquist ocean) between Avalonia and Baltica, and the Rheic ocean between Avalonia and the so‐called Armorica microplate. Closure of the Iapetus ocean led to the Caledonian orogeny: a belt resulting from collision between Laurentia and Baltica, and from softer collisions between Avalonia and Laurentia and between Avalonia and Baltica. Closure of the Rheic ocean led to the Variscan orogeny by collision of Avalonia plus Armorica with Gondwana. A tectonic approach allows this scenario to be further refined. Another important oceanic suture is defined: the Galicia–Southern Brittany suture, running through France and Iberia and separating the Armorica microplate into North Armorica and South Armorica. Its closure by northward (or/and westward?) oceanic and then continental subduction led to early Variscan (430–370 Ma) tectonism and metamorphism in the internal parts of the Variscan belt. As no Palaeozoic suture can be detected south of South Armorica, this latter microplate should be considered as part of Gondwana since early Palaeozoic times and during its Palaeozoic north‐westward drift. Thus, the name Armorica should be restricted to the microplate included between the Rheic and the Galicia–Southern Brittany sutures.
Baltica
Laurentia
Orogeny
Cite
Citations (784)
Underthrusting of Laurentia by the continental margin of Baltica during Caledonian orogeny resulted in the lateral emplacement of Iapetus Ocean-related terranes of the Upper Allochthon at least 500 km onto Baltica. The underlying Lower and Middle allochthons of the Baltoscandian margin mostly comprise Cryogenian, Ediacaran and Cambro-Silurian sedimentary successions; basement to these formations are present only as minor, isolated fragments, except at the base of the Middle Allochthon and within the underlying windows. The upper parts of the Middle Allochthon are notable for the presence of early Ediacaran dyke-swarms and other components of the Baltoscandian continent–ocean transition zone (COT). New data are presented here on the c. 610 Ma age of the COT-related dolerites in the Kalak Nappe Complex in Northern Norway and also on detrital zircons in the underlying Laksefjord and Gaissa nappes. The former confirms that the Baltoscandian COT has a similar age along the length of the orogen; the latter shows that the detrital zircon signatures in the Lower and Middle allochthons are comparable throughout the orogen. These sedimentary rocks have dominating populations of Mesoproterozoic to latest Palaeoproterozoic zircons similar to those from southern parts of the orogen, where Sveconorwegian complexes comprise the basement to the Caledonides. Thus, they help define the probable character and age of the crystalline basement that existed along this outer margin of Baltica during the Neoproterozoic, continental lower crust that was partly subducted during Ordovician continent-arc collision and subsequently lost beneath Laurentia during the 50 million years of Scandian collisional orogeny.
Baltica
Allochthon
Laurentia
Orogeny
Basement
Continental Margin
Passive margin
Rodinia
Cite
Citations (38)
Laurentia
Baltica
Rodinia
Supercontinent
Apparent polar wander
Cite
Citations (537)
Baltica
Laurentia
Rodinia
Supercontinent
Cite
Citations (10)
Laurentia
Baltica
Rodinia
Supercontinent
Cite
Citations (156)