logo
    A new metamorphic constraint for the Eburnean orogeny from Paleoproterozoic formations of the Man shield (Aribinda and Tampelga countries, Burkina Faso)
    67
    Citation
    54
    Reference
    10
    Related Paper
    Citation Trend
    Andalusite, kyanite and sillimanite occur in well-defined zones in the Ardara aureole, NWIreland. Temperature and pressure conditions of the Al2SiO5-bearing pelites in this aureole wereestimated using ten different calibrations of garnet-biotite thermometry and five calibrations of garnetplagioclase-Al2SiO5-quartz barometry. The different calibrations provide different estimates oftemperature and pressure. However, using the most recent, and the best reversed experimental data givetemperatures varying from 510 to 605 oC, and a pressure of around 4 kbar across the Ardara aureole. Thecalculated temperatures for the analyzed samples are compared with published andalusite=sillimaniteequilibria, and these equilibria are evaluated in the Ardara aureole.
    Andalusite
    Geothermobarometry
    Sillimanite
    Grossular
    Citations (1)
    Greenschist
    Citations (0)
    Summary An occurrence of kyanite in the inner aureole of a granodiorite intrusion is described from south-western Ghana. Greenschist facies phyllites have been elevated to the amphibolite facies and the regional strike of these country rocks has been disrupted by the intrusion, so that clear evidence is available of the time relationships. It is concluded that the kyanite crystallized as the result of the forceful intrusion of the granodiorite, probably under epizonal conditions.
    Greenschist
    A subcircular area of about 650 km 2 in northern California and southwestern Oregon is occupied by rocks of the greenschist metamorphic facies called the Condrey Mountain Schist. This greenschist terrane is bordered on the east and west by rocks belonging to the amphibolite metamorphic facies that structurally overlie and are thrust over the Condrey Mountain Schist. The amphibolite facies is succeeded upward by metavolcanic and metasedimentary rocks belonging to the greenschist metamorphic facies. The Condrey Mountain Schist is composed predominantly of quartz-muscovite schist and lesser amounts of actinolite-chlorite schist formed by the metamorphism of graywacke and spilitic volcanic rocks that may have belonged to the Galice Formation of Late Jurassic age. Potassium-argon age determinations of 141?4 m.y. and 155?5 m.y. obtained on these metamorphic rocks seem to be incompatible with the Late Jurassic age usually assigned the Galice. The rocks that border the amphibolite facies are part of an extensive terrane of metavolcanic and metasedimentary rocks belonging to the western Paleozoic and Triassic belt. The metavolcanic rocks include some unmetamorphosed spilite but are mostly of the greenschist metamorphic facies composed of oligoclase (An15-20) and actinolite with subordinate amounts of chlorite and clinozoisiteepidote. The interbedded sedimentary rocks are predominantly argillite and slaty argillite, less commonly siliceous argillite and chert, and a few lenticular beds of marble. On the south, high-angle faults and a tabular granitic pluton separate the greenschist metavolcanic terrane from the amphibolite facies rocks; on the east, nonfoliated amphibolite is succeeded upward, apparently conformably, by metasedimentary rocks belonging to the greenschist metavolcanic terrane. In the southern part of Condrey Mountain quadrangle, an outlier of a thrust plate composed of the Stuart Fork Formation overlies the metavolcanic and metasedimentary rocks. The Stuart Fork in this region is composed of siliceous phyllite and phyllitic quartzite and is believed to be the metamorphosed equivalent of rocks over which it is thrust. In the Yreka-Fort Jones area, potassium-argon determinations on mica from the blueschist facies in the Stuart Fork gave ages of approximately 220 m.y. (Late Triassic) for the age of metamorphism. Rocks of the amphibolite facies structurally overlie the Condrey Mountain Schist along a moderate to steeply dipping thrust fault. The amphibolite terrane is composed of amphibolite and metasedimentary rocks in approximately equal amounts accompanied by many bodies of serpentinite and a number of gabbro and dioritic plutons. Most of the amphibolite is foliated, but some is nonfoliated; the nonfoliated amphibolite has an amphibolite mineralogy and commonly a relict volcanic rock texture. The nonfoliated amphibolite occurs on the southern and eastern borders of the amphibolite terrane between the areas offoliated amphibolite and the overly ing metavolcanic and metasedimentary rocks. Hornblende and plagioclase (An30-35) are the characteristic minerals, indicating that the rocks are of the almandine-amphibolite metamorphic facies. The metasedimentary rocks interbedded with the amphibolites include siliceous schist and phyllite, minor quartzite, and subordinate amounts of marble. Potassium-argon age dates obtained on hornblende from foliated amphibolite yield ages of 146?4 and 148? 4 m.y., suggesting a Late Jurassic metamorphic episode. Mafic and ultramafic rocks are widespread in the amphibolite terrane but are almost entirely absent from the area of greenschist facies metavolcanic and metasedimentary rocks. The ultramafic rocks, predominantly serpentinite, occur as a few large bodies and many small tabular concordant bodies interleaved with the foliated rocks. The ultramafic rocks include harzburgite and d1lIlite and their serpentinized equivalents. In the Condrey Mountain quadrangle, probably more t
    Greenschist
    Citations (15)
    Abstract The production of large volumes of fluid from metabasic rocks, particularly in greenstone terranes heated across the greenschist–amphibolite facies transition, is widely accepted yet poorly characterized. The presence of carbonate minerals in such rocks, commonly as a consequence of sea‐floor alteration, has a strong influence, via fluid‐rock buffering, on the mineral equilibria evolution and fluid composition. Mineral equilibria modelling of metabasic rocks in the system Na 2 O‐CaO‐FeO‐MgO‐Al 2 O 3 ‐SiO 2 ‐CO 2 ‐H 2 O (NCaFMASCH) is used to constrain the stability of common metabasic assemblages. Calculated buffering paths on T – X CO2 pseudosections, illustrate the evolution of greenstone terranes during heating across the greenschist‐amphibolite transition. The calculated paths constrain the volume and the composition of fluid produced by devolatilization and buffering. The calculated amount and composition of fluid produced are shown to vary depending on P – T conditions, the proportion of carbonate minerals and the X CO2 of the rocks prior to prograde metamorphism. In rocks with an initially low proportion of carbonate minerals, the greenschist to amphibolite facies transition is the primary period of fluid production, producing fluid with a low X CO2 . Rocks with greater initial proportions of carbonate minerals experience a second fluid production event at temperatures above the greenschist to amphibolite facies transition, producing a more CO 2 ‐rich fluid ( X CO2 = 0.2–0.3). Rocks may achieve these higher proportions of carbonate minerals either via more extensive seafloor alteration or via infiltration of fluids. Fluid produced via devolatilization of rocks at deeper crustal levels may infiltrate and react with overlying lower temperature rocks, resulting in external buffering of those rocks to higher X CO2 and proportions of carbonate minerals. Subsequent heating and devolatilization of these overlying rocks results in buffering paths that produce large proportions of fluid at X CO2 = 0.2–0.3. The production of fluid of this composition is of importance to models of gold transport in Archean greenstone gold deposits occurring within extensive fluid alteration haloes, as these haloes represent the influx of fluid of X CO2 = 0.2–0.3 into the upper crust.
    Greenschist