logo
    Radiative impact of boreal smoke in the Arctic: Observed and modeled
    101
    Citation
    79
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    The Arctic climate is modulated, in part, by the presence of aerosols that affect the horizontal and vertical distribution of radiant energy passing through the atmosphere. Aerosols affect the surface‐atmosphere radiation balance directly through interactions with solar and terrestrial radiation and indirectly through interactions with cloud particles. During summer 2004 forest fires destroyed vast areas of boreal forest in Alaska and western Canada, releasing smoke into the atmosphere. Smoke aerosol passing over instrumented field sites near Barrow, Alaska, was monitored to determine its physical and optical properties and its impact on the surface radiation budget. Empirical determinations of the direct aerosol radiative forcing (DARF) by the smoke were used to corroborate simulations made using the Moderate Resolution Transmittance radiative transfer model, MODTRAN™5. DARF is defined as the change in net shortwave irradiance per unit of aerosol optical depth (AOD). DARF, varying with solar angle and surface type, was evaluated at the surface, at the top of the atmosphere (TOA), and within the intervening layers of the atmosphere. The TOA results are compared with fluxes derived from coincident satellite retrievals made using the Clouds and the Earth's Radiant Energy System (CERES) radiance data. Smoke tends to reduce the net shortwave irradiance at the surface while increasing it within layers in which it resides. Over the Arctic tundra during summer, a layer of smoke having AOD = 0.5 at 500 nm produces a diurnally averaged DARF of about −40 W m −2 at the surface and −20 W m −2 at TOA, while the layer itself tends to warm at a rate of ≈1 K d −1 . The tendency of smoke to cool the surface while heating the layer above may lead to increased atmospheric stability and suppress cloud formation. Radiative forcing at the top of the atmosphere is especially sensitive to small changes in surface albedo, evidenced in both the model results and satellite retrievals. TOA net shortwave flux decreases when smoke is present over dark surfaces and tends to increase if the underlying surface is bright. For example, at solar noon during midsummer at Barrow, a layer of smoke having AOD(500) = 0.5 will reduce the net shortwave flux at TOA by ≈30 W m −2 over the ocean while at the same time increasing it by 20 W m −2 over an adjacent area of melting sea ice. For smoke aerosol, the sensitivity of DARF to changing surface albedo (assuming a solar zenith angle of 50°) is about +15 W m −2 AOD −1 for every increase in surface albedo of 0.10. Throughout the Arctic summer, surface and TOA cooling and a tendency toward warming in the intervening atmospheric layers are the dominant radiative impacts of boreal smoke over the ocean and tundra areas, but the radiative forcing at TOA is positive over regions covered by ice or snow. Enhanced differential cooling/heating of ocean, ice, and snow due to the presence of smoke in the atmosphere may affect regional circulation patterns by perturbing diabatic processes. Should the frequency and intensity of boreal fires increase in the future because of global warming, the more persistent presence of smoke in the atmosphere may be manifest as a negative feedback at the surface. In addition, there will likely be indirect radiative impacts of the smoke as it influences cloudiness, which in turn further modulates the Arctic radiation budget.
    Keywords:
    Longwave
    Shortwave
    Earth's energy budget
    Shortwave radiation
    There is direct evidence that excess net radiation calculated in general circulation models at continental surfaces [of about 11–17 W m−2 (20%–27%) on an annual basis is not only due to overestimates in annual incoming shortwave fluxes [of 9–18 W m−2 (6%–9%)], but also to underestimates in outgoing longwave fluxes. The bias in the outgoing longwave flux is deduced from a comparison of screen-air temperature observations, available as a global climatology of mean monthly values, and model-calculated surface and screen-air temperatures. An underestimate in the screen temperature computed in general circulation models over continents, of about 3 K on an annual basis, implies an underestimate in the outgoing longwave flux, averaged in six models under study, of 11–15 W m−2 (3%–4%). For a set of 22 inland stations studied previously, the residual bias on an annual basis (the residual is the net radiation minus incoming shortwave plus outgoing longwave) varies between 18 and −23 W m−2 for the models considered. Additional biases in one or both of the reflected shortwave and incoming longwave components cannot be ruled out.
    Longwave
    Shortwave
    Shortwave radiation
    Outgoing longwave radiation
    Abstract. This study presents a new methodology, called temperature tagging. It keeps track of the contributions of individual processes to temperature within a climate model simulation. As a first step and as a test bed, a simple box climate model is regarded. The model consists of an atmosphere, which absorbs and emits radiation, and of a surface, which reflects, absorbs and emits radiation. The tagging methodology is used to investigate the impact of the atmosphere on surface temperature. Four processes are investigated in more detail and their contribution to the surface temperature quantified: (i) shortwave influx and shortwave atmospheric absorption ("sw"), (ii) longwave atmospheric absorption due to non-CO2 greenhouse gases ("nC"), (iii) due to a base case CO2 concentration ("bC"), and (iv) due to an enhanced CO2 concentration ("eC"). The differential equation for the temperature in the box climate model is decomposed into four equations for the tagged temperatures. This method is applied to investigate the contribution of longwave absorption to the surface temperature (greenhouse effect), which is calculated to be 68 K. This estimate contrasts an alternative calculation of the greenhouse effect of slightly more than 30 K based on the difference of the surface temperature with and without an atmosphere. The difference of the two estimates is due to a shortwave cooling effect and a reduced contribution of the shortwave to the total downward flux: the shortwave absorption of the atmosphere results in a reduced net shortwave flux at the surface of 192 W m−2, leading to a cooling of the surface by 14 K. Introducing an atmosphere results in a downward longwave flux at the surface due to atmospheric absorption of 189 W m−2, which roughly equals the net shortwave flux of 192 W m−2. This longwave flux is a result of both the radiation due to atmospheric temperatures and its longwave absorption. Hence the longwave absorption roughly accounts for 91 W m−2 out of a total of 381 W m−2 (roughly 25%) and therefore accounts for a temperature change of 68 K. In a second experiment, the CO2 concentration is doubled, which leads to an increase in surface temperature of 1.2 K, resulting from a temperature increase due to CO2 of 1.9 K, due to non-CO2 greenhouse gases of 0.6 K and a cooling of 1.3 K due to a reduced importance of the solar heating for the surface and atmospheric temperatures. These two experiments show the feasibility of temperature tagging and its potential as a diagnostic for climate simulations.
    Shortwave
    Longwave
    Shortwave radiation
    Citations (2)