logo
    Post-Fleming Surface Formations of Coastal Southeast Texas and South Louisiana
    20
    Citation
    0
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    The paper gives a general discussion of the surface formations and surface geology of the post-Fleming belt lying between the coast and the outcrop of the Fleming in southeast Texas and south Louisiana. Data and discussion are presented under four main heads, Physiography, Stratigraphy, Origin and History, and Structure. Under Physiography it is shown that the present physiography indicates the general features of the geology of the area, that is, the subdivision of the post-Fleming group into four formations, Recent, Beaumont, Lissie, and Willis, and the general structure and interrelations of these formations. Under Stratigraphy the present subdivision is correlated with earlier classifications. The formations are described. The Willis, which is a new formation roughly equivalent to the old Lafayette and Reynosa of this area, is named, subdivided into three members, and described in detail. Its relation to the Goliad formation of south Texas is discussed. Under Origin and History the deposition of these formations is credited to the ancestors of the present major streams of the coast. The peculiar stratigraphic and structural interrelations of the post-Fleming formations are attributed to cycles of deposition separated by tilting movements which affected this part of the coastal plain at intervals. Under Structure the regional structure of the formations, local irregularities, methods of mapping, and the relation of surface to subsurface structure are discussed.
    Fluvial fans represent one of the dominant sedimentary systems at the active margins of non-marine foreland basins. The Puig-reig anticline at the north-eastern margin of the Ebro Foreland Basin (SE Pyrenees, Spain) exposes continuous outcrops of Late Eocene-Early Oligocene fluvial deposits, from proximal to medial fluvial fan environments. The proximal deposits are found in the north limb of the anticline, especially in the northwest zone. These deposits are characterised by conglomerates with minor interbedded sandstones, with thick and wide sheet-like geometries with unscoured or variably scoured basal surfaces. These are interpreted to be the deposits of unconfined flash floods and wide-shallow channel streams. The medial deposits, covering the rest of the anticline, consist of interbedded conglomerates, sandstones and claystones. These are interpreted to have been deposited from braided to meandering channel streams and overbank areas. Distal deposits are found towards the south, beyond the anticline, and are characterised by sandstone and clay deposits of terminal lobes and lacustrine deltas. This study assesses the impact of the primary depositional characteristics, diagenesis and deformation of the most heterolithic portion of the system, with implications for increasing our understanding of folded fluvial reservoirs. Diagenetic processes, mainly mechanical compaction and calcite cementation, resulted in overall low intergranular porosity, with limited relatively high porosity developed in sandstone lithofacies in the medial deposits. Deformation associated with thrusting and fold growth resulted in the formation of abundant fractures, with relatively high fracture intensities observed in sandstone lithofacies in the anticline crest. This study shows that post-depositional processes can both improve and diminish the reservoir potential of basin proximal fluvial deposits, through the development of fracture networks and by compaction-cementation. The comparison of the Puig-reig anticline with other similar settings worldwide indicates that foreland basin margin locations may be potential areas for effective reservoirs, even in the case of low intergranular porosity.
    Anticline
    Arenite
    Syncline
    Outcrop
    Pennsylvanian foreland deformation associated with the Ouachita orogene reactivated a west-northwest-east-southeast Cambrian basement trend, the southern Oklahoma aulacogen, to form the Wichita uplift, southwest Oklahoma. The 30-km-wide subsurface Frontal fault zone separates the uplift from the Anadarko basin to the north. Horizontal shortening across this fault zone is estimated at 7-15 km (20-40%), vertical displacement totals 9-10 km from the uplift to the basin. Folds are mapped on an interformational scale within the Frontal fault zone, and on an intraformational scale (Cambro-Ordovician Arbuckle Group) in the Slick Hills, southwest Oklahoma. Additional shortening occurred along southwest dipping mountain flank thrusts and on bedding plane thrusts, respectively. Hanging wall blocks of major faults contain the shallow dipping limb and anticlinal hinge zone of the interformational scale folds. Oil and gas production is generally restricted to these anticlinal crests within Paleozoic rocks. Deep wells (> 6000 m) that have penetrated footwall imbricates of the mountain flank thrusts have drilled through steep-overturned beds and tight recumbent folds before passing through faults into a normal stratigraphic sequence. Basement thrust loading of the southern margin of the Anadarko basin controlled the trend (west-northwest-east-southeast) of the axis of maximum deposition within the basin during the Pennsylvanian.
    Basement
    Thrust fault
    Citations (2)