logo
    The structure and diagenetic transformation of illite-smectite and chlorite-smectite from North Sea Cretaceous-Tertiary chalk
    64
    Citation
    40
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Illite-smectite (I-S) mixed-layer minerals from North Sea oil fields and a Danish outcrop were investigated to determine the detailed structure and the diagenetic clay transformation. Clay layers in the chalk and residues obtained by dissolution of the chalk matrix at pH 5 were investigated. The phase compositions and layer sequences were determined by X-ray diffraction (XRD) including simulation with a multicomponent program. The structural formulae were determined from chemical analysis, infrared (IR) and 27 Al NMR spectroscopies and XRD, and the particle shape by atomic force microscopy (AFM). A high-smectitic (HS) I-S phase and a lowsmectitic (LS) illite-smectite-chlorite (I-S-Ch) phase, both dioctahedral, together constitute 80 – 90% of each sample. However, two samples contain significant amounts of tosudite and of Ch-Serpentine (Sr), respectively. Most of the clay layers have probably formed by dissolution of the chalk, but one Campanian and one Santonian clay layer in well Baron 2 may have a sedimentary origin. The HS and LS minerals are probably of detrital origin. Early diagenesis has taken place through a fixation of Mg in brucite interlayers in the LS phase, this solid-state process forming di-trioctahedral chlorite layers. During later diagenesis involving dissolution of the HS phase, neoformation of a tosudite or of a random mixed-layer trioctahedral chlorite-berthierine took place. In the tosudite, brucite-like sheets are regularly interstratified with smectite interlayers between dioctahedral 2:1 layers, resulting in ditrioctahedral chlorite layers.
    Keywords:
    Illite
    Brucite
    To understand clay mineral transformations in hydromorphic conditions in the red earth sediments in Xuancheng, south China, clay mineralogy was investigated using X‑ray diffraction (XRD) and highresolution transmission electron microscopy (HRTEM). The XRD results indicated that clay minerals in the hydromorphic soils were illite, kaolinite, smectite, vermiculite, and mixed-layer illite/smectite and illite/smectite/kaolinite. Changes of the kaolinitic reflections under the various conditions suggested that the kaolinitic phase is a mixed-layer structure having kaolinite layers randomly interstratified with illite and smectite layers. HRTEM observation showed that 10 Å illite layers interstratified with both 15 Å smectite layers and 7 Å kaolinite layers in clay particles, confirming the occurrence of illite/smectite/kaolinite (I/S/K) three-component mixed-layer clays. The lattice fringes of the I/S/K clays appeared corrugated and vanishing, and also exhibited variable thickness along a lattice fringe, which were consistent with changes from illite to smectite, from smectite to kaolinite, and from illite to kaolinite, respectively. Hydromorphic conditions in the Xuancheng soils led simultaneously to the direct transformation of illite to kaolinite and the transformation of illite to smectite to kaolinite in the pedogenic processes, and the formation of I/S/K three-component mixed-layer clays as intermediate products of these processes.
    Illite
    Vermiculite
    Citations (26)
    Abstract Diagenetic chlorite is forming as a result of temperature-controlled burial diagenesis in shales from the Sleipner area of the North Sea. Accompanying chlorite diagenesis, kaolinite and illite-smectite decrease in abundance, and illite increases in abundance. These clay mineral transformations occur between 122–126°C at temperatures higher than normally expected for chlorite diagenesis. Kaolinite and ordered illite-smectite are largely unaffected by diagenesis below 100°C. It is proposed that chlorite diagenesis is thus delayed due to the absence of a source of ions resulting from smectite decomposition. Clay mineralogy is of no lithostratigraphic use in the Jurassic sediments of the Sleipner area. However, the zone of chlorite diagenesis is a reliable indicator of maximum burial temperature.
    Illite