logo
    Biogeochemical controls on authigenic carbonate formation at the Chapopote “asphalt volcano”, Bay of Campeche
    59
    Citation
    73
    Reference
    10
    Related Paper
    Citation Trend
    Cold seep emissions of low temperature fluid from the marine sediment basins are mainly comprised of methane and other hydrocarbons. A series of biogeochemical processes related to methane lead to the formation of authigenic carbonate minerals. In this study, a self-built experimental device was used to study the formation process of carbonate minerals under cold seep conditions. The concentrations of pore water chemicals, HCO3− and Ca2+ at different heights of the reactor under flow conditions can be observed. According to the experimental results, the formation process of carbonate minerals under cold seep conditions was estimated, that 1 m carbonate growth needs 12,000 and 7000 years, respectively, under fast (5 mL·min−1) and slow emission (1 mL·min−1) conditions. Furthermore, TOUGHREACT was used to simulate the diagenesis process. A 1D unsteady react-transport model was developed, and the experimental data was used to constrain the simulation. The results of simulation show that the carbonates need 17,000 and 9700 years to grow 1 m under the condition of fast and slow flow scenarios, respectively. The results of this work will contribute to the study of foundation on the formation of authigenic minerals in cold seep areas, and for the physical properties of sedimentary media as well.
    Authigenic
    Cold seep
    Petroleum seep
    Carbonate minerals
    Biogeochemical Cycle
    Citations (3)
    Abstract Authigenic carbonate build-ups develop at seafloor methane-seeps, where microbially mediated sulphate-dependent anaerobic oxidation of methane facilitates carbonate precipitation. Despite being valuable recorders of past methane seepage events, their role as archives of atmospheric processes has not been examined. Here we show that cyclic sedimentation pulses related to the Indian monsoon in concert with authigenic precipitation of methane-derived aragonite gave rise to a well-laminated carbonate build-up within the oxygen minimum zone off Pakistan (northern Arabian Sea). U–Th dating indicates that the build-up grew during past ~1,130 years, creating an exceptional high-resolution archive of the Indian monsoon system. Monsoon-controlled formation of seep-carbonates extends the known environmental processes recorded by seep-carbonates, revealing a new relationship between atmospheric and seafloor processes.
    Authigenic
    Petroleum seep
    Seafloor Spreading
    Alkalinity
    Sedimentation
    Citations (18)
    ABSTRACT Faunally restricted argillaceous wackestones from the Middle Jurassic of eastern England contain evidence of early diagenetic skeletal aragonite dissolution and stabilization of the carbonate matrix, closely followed by precipitation of zoned calcite cements, and precipitation of pyrite. Distinctive cathodoluminescence and trace element trends through the authigenic calcites, their negative δ 13 C compositions and the location of pyrite in the paragenetic sequence indicate that calcite precipitation took place during sequential bacterial Mn, Fe and sulphate reduction. Calcite δ 18 O values are compatible with cementation from essentially marine pore fluids, although compositions vary owing to minor contamination with 18 O‐depleted ‘late’cements. Mg and Sr concentrations in the calcites are lower than those in recent marine calcite cements. This may be a result of kinetic factors associated with the shallow burial cementation microenvironments. Bicarbonate for sustained precipitation of the authigenic calcites was derived largely from aragonite remobilization, augmented by that produced through anaerobic organic matter oxidation in the metal and sulphate reduction environments. Aragonite dissolution is thought to have been induced by acidity generated during aerobic bacterial oxidation of organic matter. Distinction of post‐oxic metal reduction and anoxic sulphate reduction diagenetic environments in modern carbonate sediments is uncommon outside pelagic settings, and early bacterially mediated diagenesis in modern platform carbonates is associated with extensive carbonate dissolution. High detrital Fe contents of the Jurassic sediments, and their restricted depositional environment, were probably the critical factors promoting early cementation. These precipitates constitute a unique example of calcite authigenesis in shallow water limestones during bacterial Mn and Fe reduction.
    Authigenic
    Cementation (geology)
    Carbonate minerals
    Lithification
    Carbonate compensation depth