logo
    Field Tracer Tests on the Mobility of Natural Organic Matter in a Sandy Aquifer
    71
    Citation
    47
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    The field‐scale transport of natural organic matter (NOM) was examined in a two‐well forced gradient injection experiment in a sandy, coastal plain aquifer in Georgetown, South Carolina. Spatial moments described the migration of the center of mass of NOM and conservative tracer. Temporal moments were used to estimate mass loss and retardation of the NOM along a transect of six sampling locations at two depths and at the withdrawal well. Large differences were observed in transport behavior of different subcomponents of NOM. Larger and more strongly binding NOM components in the injection solution are postulated to adsorb and displace weakly binding, low‐molecular weight NOM in groundwater. Conversely, NOM components that were similar to the groundwater NOM were transported almost conservatively, presumably due to “passivation” of the aquifer by previously adsorbed components of the groundwater NOM. NOM may thus exhibit two types of effects on contaminant dynamics in the subsurface. When the equilibria between solution and solid phase NOM is disrupted by introduction of a novel source of NOM, descriptions of the multicomponent transport process are complex and predictive modeling is problematic. Because of the differences in transport behavior of NOM subcomponents, the chemical properties and, more importantly, the functional behavior of NOM with respect to contaminant migration will vary with time and distance along a flow path. However, when groundwater NOM exists at a steady state with respect to adsorption on aquifer surfaces, the migration of NOM, and the contaminant‐NOM complex, may be approximated as the transport of a conservative solute.
    Keywords:
    TRACER
    Natural Organic Matter
    The concentrations of chlorofluorocarbons (CFC-11, CFC-12 and CFC-113) and tritium (3H) content in groundwater were used to date groundwater age, delineate groundwater flow systems and estimate flow velocity in the Hohhot basin. The estimated young groundwater age is fallen in the bracket of 21 ~ 50 a and indicates the presence of two different age profiles and flow systems in the shallow groundwater system. Older age waters occur under the topographically low areas, where the aquifer is double-layer aquifer system consisting of shallow unconfined-semi-confined aquifer and deep confined aquifer. This reflects long flow paths associated with regional flow. Groundwater (range from 21 to 34 years) in the north piedmont and east hilly areas, where the aquifer is a single-layer aquifer consisting of alluvial fans, are typically younger than those in the low areas. The combination of CFCs dating with hydrogeological information indicates that both local and regional flow systems are present at the basin. The regional groundwater flow mainly flows from the north and east to the southwest, the local groundwater flow system occurs nearby the Hohhot city. The mean regional groundwater flow velocity of the shallow groundwater is estimated about 0.73 km/a. These findings can aid in refining hydrogeological conceptual model of the study area. Copyright © 2012 John Wiley & Sons, Ltd.
    Groundwater discharge
    Groundwater model
    Citations (16)
    In southern Bangladesh excessive levels of As in shallow groundwater have led to deeper groundwater becoming the main alternative source of As-free potable water. Hydrogeological configuration indicates that tube-wells pumping from these depths may be vulnerable to As breakthrough from shallow levels. The thesis explores a range of methods of representing lithological heterogeneity of the Bengal Aquifer System (BAS) in models of groundwater flow and travel time. The aim is to support models of arsenic (As) flux to the deep groundwater flow-system of BAS, and hence to aid assessment of the vulnerability of deep groundwater to invasion by As. The research uses an array of geological information including geophysical logs (n=12), hydrocarbon exploration data (n=11), and drillers' logs (n=589) from a 5000 km2 area to characterise the aquifer heterogeneity as a basis for alternative representations of hydrogeological structure in groundwater flow modelling. Groundwater samples from southern Bangladesh were analysed for 14C in order to determine groundwater age (n=23) and for hydrochemical (n=75) and isotopic (n=50) characterisation. A new hypothesis `SiHA (Silt-clay layers influence Hierarchical groundwater flow systems and Arsenic progression in aquifer)' is presented which integrates sedimentological heterogeneities, groundwater flow, and geochemical processes to explain the distribution and geological evolution of groundwater As in the aquifer. The hypothesis explains the spatio-vertical variability of groundwater As concentration by 'groundwater flow systems and differential flushing' in the aquifer. Groundwater flow models based on eight different yet plausible aquifer representations provide adequate simulations of hydraulic head, but contrasting implications for well catchments and travel times. The better representations are judged by comparing model outcomes of travel time with groundwater age determination using 14C. Comparisons demonstrate the importance of incorporating hydrostratigraphy and spatial heterogeneity in order to optimise model representations, and implications for the security of As-free deep groundwater in the BAS.
    Groundwater model
    Aquifer test
    Groundwater discharge
    Citations (7)
    Groundwater is the world’s largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts and evaporation in areas with shallow water tables. In this study, building on previous work, we simulate groundwater head fluctuations and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5′) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6–20% of the total aquifer area) improves estimates of timing and amplitude of groundwater head fluctuations and changes groundwater flow paths and groundwater-surface water interaction rates. Groundwater flow paths within confining layers are shorter than paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths crossing catchment boundaries are simulated, thereby supporting water budgets of neighboring catchments or aquifer systems. The developed two-layer transient groundwater model is used to identify hot-spots of groundwater depletion. Global groundwater depletion is estimated as 7013 km3 (137 km3y−1) over 1960–2010, which is consistent with estimates of previous studies.
    Groundwater model
    Groundwater discharge
    Hydraulic head