logo
    Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust
    352
    Citation
    42
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Zircon from a lower crustal metapelitic granulite (Val Malenco, N‐Italy) display inherited cores, and three metamorphic overgrowths with ages of 281 ± 2, 269 ± 3 and 258 ± 4 Ma. Using mineral inclusions in zircon and garnet and their rare earth element characteristics it is possible to relate the ages to distinct stages of granulite facies metamorphism. The first zircon overgrowth formed during prograde fluid‐absent partial melting of muscovite and biotite apparently caused by the intrusion of a Permian gabbro complex. The second metamorphic zircon grew after formation of peak garnet, during cooling from 850 °C to c. 700 °C. It crystallized from partial melts that were depleted in heavy rare earth elements because of previous, extensive garnet crystallization. A second stage of partial melting is documented in new growth of garnet and produced the third metamorphic zircon. The ages obtained indicate that the granulite facies metamorphism lasted for about 20 Myr and was related to two phases of partial melting producing strongly restitic metapelites. Monazite records three metamorphic stages at 279 ± 5, 270 ± 5 and 257 ± 4 Ma, indicating that formation ages can be obtained in monazite that underwent even granulite facies conditions. However, monazite displays less clear relationships between growth zones and mineral inclusions than zircon, hampering the correlation of age to metamorphism. To overcome this problem garnet–monazite trace element partitioning was determined for the first time, which can be used in future studies to relate monazite formation to garnet growth.
    Early Precambrian rock units in the Urals are present in several polymetamorphic complexes, which are exposed in the Urals in the form of small (<1500 km2) tectonic blocks. Their ages are Archaean (as old as 3.5 Ga) and Palaeoproterozoic. During the formation of these complexes in the early Precambrian, two stages of ultra-high-temperature (granulite) metamorphism occurred. The maximum age of the early Neoarchaean stage of metamorphism is 2.79 Ga. Evidence of this metamorphic event includes the dating of the Taratash gneiss-granulite complex of the South Urals. Gneiss-migmatite complexes, which dominate the lower Precambrian section of the Urals, were formed in the Palaeoproterozoic during the sequential appearance of granulite facies metamorphism followed by amphibolite facies metamorphism and accompanying granitization. The maximum age of the Palaeoproterozoic stage of granulite metamorphism in the Alexandrov gneiss-migmatite complex, the most well-studied complex in the South Urals, is 2.08 Ga.
    Migmatite
    The various models for the nature and origin of fluids in granulite facies metamorphism were summarized. Field and petrologic evidence exists for both fluid-absent and fluid-present deep crustal metamorphism. The South Indian granulite province is often cited as a fluid-rich example. The fluids must have been low in H2O and thus high in CO2. Deep crustal and subcrustal sources of CO2 are as yet unproven possibilities. There is much recent discussion of the possible ways in which deep crustal melts and fluids could have interacted in granulite metamorphism. Possible explanations for the characteristically low activity of H2O associated with granulite terranes were discussed. Granulites of the Adirondacks, New York, show evidence for vapor-absent conditions, and thus appear different from those of South India, for which CO2 streaming was proposed. Several features, such as the presence of high-density CO2 fluid inclusions, that may be misleading as evidence for CO2-saturated conditions during metamorphism, were discussed.
    Citations (8)
    Abstract U–Pb age data collected from zircon and monazite are used to draw fundamental inferences about tectonic processes in the Earth. Despite the emphasis placed on zircon and monazite ages, the understanding of how to relate the timing of growth of zircon and monazite to an evolving rock system remains in its infancy. In addition, few studies have presented large datasets of geochronological data from zircon and monazite occurring in the same metamorphic rock sample. Such information is crucial for understanding the growth of zircon relative to monazite in a systematic and predictive manner, as per this study. The data that exist support the generally held conception that zircon ages tend to be older than monazite ages within the same rock. Here experimental data for zircon and monazite saturation in melt‐bearing rocks are integrated with phase diagram calculations. The calculations constrain the dissolution and growth behaviour of zircon and monazite with respect to evolving pressure, temperature and silicate mineral assemblages in high‐grade, melt‐bearing, metasedimentary rocks. Several key results emerge from this modelling: first, that in aluminous metapelitic rocks (i.e. garnet + cordierite + sillimanite assemblages), zircon ages are older than monazite ages in the same rock; second, that the growth rate of accessory minerals is nonlinear and much higher at and near saturation than at lower temperatures; and third, that the difference in zircon and monazite ages from the same rock may be ascribed to differences in the temperature(s) at which zircon and monazite grow rather than differences in closure temperature systematics. Using our methodology the cooling rate of granulites from the Reynolds Range, central Australia, have been constrained at ∼4 °C Myr −1 . This study serves as a first‐pass template on which further research in applying the technique to a field study can be based.