logo
    Ridge subduction sparked reorganization of the Pacific plate‐mantle system 60–50 million years ago
    191
    Citation
    49
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract A reorganization centered on the Pacific plate occurred ~53–47 million years ago. A “top‐down” plate tectonic mechanism, complete subduction of the Izanagi plate, as opposed to a “bottom‐up” mantle flow mechanism, has been proposed as the main driver. Verification based on marine geophysical observations is impossible as most ocean crust recording this event has been subducted. Using a forward modeling approach, which assimilates surface plate velocities and shallow thermal structure of slabs into mantle flow models, we show that complete Izanagi plate subduction and margin‐wide slab detachment induced a major change in sub‐Pacific mantle flow, from dominantly southward before 60 Ma to north‐northeastward after 50 Ma. Our results agree with onshore geology, mantle tomography, and the inferred motion of the Hawaiian hot spot and are consistent with a plate tectonic process driving the rapid plate‐mantle reorganization in the Pacific hemisphere between 60 and 50 Ma. This reorganization is reflected in tectonic changes in the Pacific and surrounding ocean basins.
    Keywords:
    Slab window
    Pacific Plate
    Seamount
    Hotspot (geology)
    Convergent boundary
    Volcanic arc
    North American Plate
    The tectonics of the Pacific margin of North America between Vancouver Island and south-central Alaska are dominated by the northwest motion of the Pacific plate with respect to the North America plate at a velocity of approximately 50 mm/yr. In the south of this mapped region, convergence between the northern extent of the Juan de Fuca plate (also known as the Explorer microplate) and North America plate dominate. North from the Explorer, Pacific, and North America plate triple junction, Pacific:North America motion is accommodated along the ~650-km-long Queen Charlotte fault system. Offshore of Haida Gwaii and to the southwest, the obliquity of the Pacific:North America plate motion vector creates a transpressional regime, and a complex mixture of strike-slip and convergent (underthrusting) tectonics. North of the Haida Gwaii islands, plate motion is roughly parallel to the plate boundary, resulting in almost pure dextral strike-slip motion along the Queen Charlotte fault. To the north, the Queen Charlotte fault splits into multiple structures, continuing offshore of southwestern Alaska as the Fairweather fault, and branching east into the Chatham Strait and Denali faults through the interior of Alaska. The plate boundary north and west of the Fairweather fault ultimately continues as the Alaska-Aleutians subduction zone, where Pacific plate lithosphere subducts beneath the North America plate at the Aleutians Trench. The transition is complex, and involves intraplate structures such as the Transition fault. The Pacific margin offshore British Columbia is one of the most active seismic zones in North America and has hosted a number of large earthquakes historically.
    Pacific Plate
    North American Plate
    Convergent boundary
    Transform fault
    Triple junction
    Slab window
    Eurasian Plate
    Citations (1)
    Pacific Plate
    Slab
    Slab window
    Volcanic arc
    North American Plate
    Convergent boundary
    Island arc
    Citations (145)
    Abstract The northward migration of the Mendocino triple junction (MTJ) drives a fundamental plate boundary transformation from convergence to translation; producing a series of strike‐slip faults, that become the San Andreas plate boundary. We find that the 3‐D structure of the Pacific plate lithosphere in the vicinity of the MTJ controls the location of San Andreas plate boundary formation. At the time of initiation of the Pacific‐North America plate boundary (∼30 Ma), the sequential interaction with the western margin of North America of the Pioneer Fracture Zone, soon followed by the Mendocino Fracture Zone, led to the capture of a small segment of partially subducted Farallon lithosphere by the Pacific plate, termed the Pioneer Fragment (PF). Since that time, the PF has translated with the Pacific Plate along the western margin of North America. Recently developed, high‐resolution seismic‐tomographic imagery of northern California indicates that (a) the PF is extant, occupying the western half of the slab window, immediately south of the MTJ; (b) the eastern edge of the PF lies beneath the newly forming Maacama fault system, which develops to become the locus for the primary plate boundary structure after approximately 6–10 Ma; and (c) the location of the translating PF adjacent to the asthenosphere of the slab window generates a shear zone within and below the crust that develops into the plate boundary faults. As a result, the San Andreas plate boundary forms interior to the western margin of North America, rather than at its western edge.
    Pacific Plate
    Slab window
    North American Plate
    Convergent boundary
    Triple junction
    Fracture zone
    Transform fault
    Citations (0)
    Abstract SKS shear wave splitting measurements from three Program for Array Seismic Studies of the Continental Lithosphere experiments (Broadband Experiment Across the Alaska Range, Alaska Receiving Cross Transect of the Inner Core, and Multidisciplinary Observations Of Subduction), which form a north/south transect across Alaska, show a remarkably simple pattern of two large anisotropy domains. In the northern domain, extending from the 70 km contour of the subducting Pacific plate north to the Arctic Ocean, fast directions are consistently in the NE‐SW direction. These directions are essentially parallel to the absolute plate motion direction in northern Alaska and parallel to the strike of the subducting plate above the mantle wedge, suggesting that they represent some combination of plate‐scale asthenospheric flow in the upper mantle and flow along the subducting plate in the mantle wedge. A strong wedge component beneath the Alaska Range is required to explain systematics of splitting delay times. In the southern domain, which extends south from the 70 km depth contour to the subducting plate, fast directions are in the NW‐SE direction, a 90° rotation from the northern domain. These fast directions are parallel to the dip of the subducting plate in the direction of convergence and represent entrained flow beneath the subducting slab; the Pacific Plate absolute motion approximately parallels local convergence. Two major factors seem to control flow in these regions, absolute plate motion in the north and the subduction of the Pacific plate in the south, although both subduction‐driven wedge flow and absolute plate motion contribute to the southern part of the northern regime.
    Shear wave splitting
    Slab window
    Pacific Plate
    North American Plate
    Convergent boundary
    Slab
    Citations (18)
    The oceanic-continental boundary west of the Queen Charlotte Islands is marked by the active Queen Charlotte Fault Zone. Motion along the fault is predominantly dextral strike slip, but relative plate motion and other studies indicate that a component of convergence between the oceanic Pacific plate and the continental North American plate presently exists. This convergence could be manifest through different types of deformation: oblique subduction, crustal thickening, or lateral distortion of the plates. In 1983, a 330 km offshore–onshore seismic refraction profile extending from the deep ocean across the islands to the mainland of British Columbia was recorded to investigate (i) structure of the fault zone and associated oceanic–continental boundary and (ii) lithospheric structure beneath the islands and Hecate Strait to define the regional transition from Pacific plate to North American plate and thus the nature of the convergence. Two-dimensional ray tracing and synthetic seismogram modelling of many record sections enabled the derivation of a composite velocity structural section along the profile. The structural section also was tested with two-dimensional gravity modelling. Part I of the study addressed the structure of the fault zone; part II addresses lithospheric structure extending eastward to the mainland.The derived velocity structure has some important and well-constrained features: (i) anomalously low crustal velocities (5.3 km/s with a 0.2 km/s per km gradient) underlain by a steep, 19 °eastward-dipping boundary above the mantle in the terrace region west of the main fault; (ii) a thin crust of 21–27 km beneath the Queen Charlotte Islands; and (iii) a gentle 4 °eastward dip of the Moho below Hecate Strait as crustal thickness increases from 27 km to 32 km. The gravity modelling requires that mantle material extend upwards to a depth of about 30 km below the mainland and indicates that an underlying subducted slab, if it exists, extends eastward no farther than the mainland.Unfortunately, the velocity structure delineated by this study could not unambiguously determine the mode of deformation, because the lowermost crustal block beneath Queen Charlotte Islands and Hecate Strait can be interpreted as subducted oceanic crust or middle to lower continental crust. Thus, two different tectonic models for the transition from Pacific plate to North American plate are discussed: in one, oblique subduction is the principal characteristic; in the other, oceanic lithosphere juxtaposed against continental lithosphere across a narrow boundary zone along which only transcurrent motion occurs is the dominant feature. Based on the thin crust beneath the Queen Charlotte Islands, the lack of a wide zone of deformation along the plate boundary region, and other geological and geophysical characteristics, oblique subduction is the more plausible model.
    Convergent boundary
    Pacific Plate
    Slab window
    North American Plate
    Citations (22)
    Abstract With a small fraction of marginal subduction zones, the driving mechanism for the North American plate motion is in debate. We construct global mantle flow models simultaneously constrained by geoid and plate motions to investigate the driving forces for the North American plate motion. By comparing the model with only near‐field subducting slabs and that with global subducting slabs, we find that the contribution to the motion of the North American plate from the near‐field Aleutian, central American, and Caribbean slabs is small. In contrast, other far‐field slabs, primarily the major segments around western Pacific subduction margins, provide the dominant large‐scale driving forces for the North American plate motion. The coupling between far‐field slabs and the North American plate suggests a new form of active plate interactions within the global self‐organizing plate tectonic system. We further evaluate the extremely slow seismic velocity anomalies associated with the shallow partial melt around the southwestern North America. Interpreting these negative seismic shear‐velocity anomalies as purely thermal origin generates considerably excessive resistance to the North American plate motion. A significantly reduced velocity‐to‐density scaling for these negative seismic shear‐velocity anomalies must be incorporated into the construction of the buoyancy field to predict the North American plate motion. We also examine the importance of lower mantle buoyancy including the ancient descending Kula‐Farallon plates and the active upwelling below the Pacific margin of the North American plate. Lower mantle buoyancy primarily affects the amplitudes, as opposed to the patterns of both North American and global plate motions.
    Slab window
    North American Plate
    Pacific Plate
    Citations (9)
    The northward migration of the Mendocino Triple Junction (MTJ) drives a fundamental plate boundary transformation from convergence to translation; producing a series of strike-slip faults, that become the San Andreas plate boundary. How and why these faults develop where they do is enigmatic. We find that the 3-D structure of the Pacific plate lithosphere in the vicinity of the MTJ controls the location of San Andreas plate boundary formation. Recently developed, high-resolution seismic-tomographic imagery of northern California indicates that (1) the Pioneer Fragment, and extension of the Pacific plate beneath the western margin of North America occupies the western half of the slab window, immediately south of the MTJ; (2) the eastern edge of the Pioneer Fragment lies beneath the newly forming Maacama Fault system, which develops to become the locus for the primary plate boundary structure after approximately 6-10 Ma (eg. the present-day East Bay faults in the SF Bay region); and (3) the placement of the translating Pioneer Fragment adjacent to the asthenosphere of the slab window, and its coupling to the overlying North American crust generate a shear zone within and below the crust that develops into the  plate boundary faults. This plate boundary configuration has been operable since the initial formation of the transform plate boundary. As a result, the San Andreas plate boundary forms within the western margin of North America, approximately 100 km inboard of the western edge of North America, rather than at its western edge. One additional result of this is that blocks of North America lithosphere are detached and become terranes (such as the Salinian and Nacimiento (Franciscan) blocks) that are captured by and translate with the Pacific plate, producing the complex crustal architecture of coastal California.
    North American Plate
    Pacific Plate
    Convergent boundary
    Slab window
    The seismicity, structure and tectonics of the Indian/Pacific plate boundary in the North Island of New Zealand have been studied by means of a microearthquake traverse oriented in the direction of dip of the subducted Pacific plate and extending for about 210 km. The geometry of the top of the Pacific plate is inferred from a band of concentrated microearthquake activity approximately 10 km thick which is identified with the crust of the plate. The Pacific plate has two knee-like bends, one where the top of the plate is about 25 km deep, the other below the volcanic front, where the plate is about 70 km deep. The shallower bend and subsequent restraightening of the plate are related to phase changes in the plate, the deeper bend to volcanism. Composite focal mechanisms indicate that seaward of the shallower bend the Pacific plate is being loaded by the Indian plate, whereas landward of this bend the Pacific plate is sinking under its own weight.
    Pacific Plate
    Microearthquake
    Convergent boundary
    Eurasian Plate
    North American Plate
    Slab window
    Composite plate