Temporal variations of non‐volcanic tremor (NVT) locations in the Mexican subduction zone: Finding the NVT sweet spot
Allen HuskerV. KostoglodovV. M. Cruz‐AtienzaD. LegrandН. М. ШапироJ. S. PayeroMichel CampilloEduardo Huesca–Pérez
77
Citation
39
Reference
10
Related Paper
Citation Trend
Abstract:
Epicentral locations of non‐volcanic tremors (NVT) in the Mexican subduction zone are determined from the peak of the energy spatial distribution and examined over time. NVT is found to occur persistently at a distance of ∼215 km from the trench, which we term the “Sweet Spot” because this region probably has the proper conditions (i.e., temperature, pressure, and fluid content) for the NVT to occur with minimum shear slip. High‐energy NVT episodes are also observed every few months, extending ∼190 km to ∼220 km from the trench with durations of a few weeks. During the 2006 slow slip event (SSE) the duration and the recurrence rate of the NVT episodes increased. Low‐energy episodes were also observed, independent from the high‐energy episodes, ∼150 km to ∼190 km from the trench during the 2006 SSE. Both the high and low energy episodes were made up of many individual NVT's that had a range of energy‐release‐rates. However, the highest energy‐release‐rates of the high‐energy episodes were consistently double those of the low‐energy episodes and the persistent activity at the Sweet Spot. We suggest that all of the high‐energy episodes are evidence of small, short repeat interval SSE. Given this model, the increased recurrence rate of the high‐energy NVT episodes during the 2006 long‐term SSE implies that short‐term SSE's also increase during the SSE and are therefore triggered by the SSE.Slow earthquake
Cite
Citations (121)
Abstract The 2011 Tohoku-Oki earthquake generated a surprisingly large near-trench slip, and earth scientists have devoted significant attention to understanding why. Some studies proposed special rupture mechanisms, such as extensive dynamic frictional weakening; others simulated this near-trench slip behavior using standard rupture mechanics. However, we have not reached a decisive conclusion for this question due to limited spatial near-trench slip resolution. Hence, we quantitatively clarified the along-plate mechanical state by significantly improving the spatial resolution of the stress release distribution with the first use of tsunami data recorded just above the large slip area in addition to offshore and onshore geodetic data. A maximum slip of 53 m reaching the trench and an insignificant stress drop (< 3 MPa) at the shallowest portion of the plate were estimated, and our model suggested that dynamic friction at the shallow near-trench portion was low during the coseismic slip. This result provides novel perspectives on the shallow slip behavior along the plate boundary, in which the strain energy accumulation at the deep portion of the fault accounts for the anomalous large shallow slip, but shallow mechanical coupling does not. A large shallow slip has been considered as a result of the release of sufficiently large strain energy in the shallow portion of the plate interface, but we suggest that shallow slips similar to that during the 2011 Tohoku-Oki earthquake may occur in any subduction zones where the energy accumulates only in the deeper portion.
Slip line field
Cite
Citations (2)
We found that repeated slow slip events observed on the deeper interface of the northern Cascadia subduction zone, which were at first thought to be silent, have unique nonearthquake seismic signatures. Tremorlike seismic signals were found to correlate temporally and spatially with slip events identified from crustal motion data spanning the past 6 years. During the period between slips, tremor activity is minor or nonexistent. We call this associated tremor and slip phenomenon episodic tremor and slip (ETS) and propose that ETS activity can be used as a real-time indicator of stress loading of the Cascadia megathrust earthquake zone.
Cite
Citations (1,174)
Slab
Slab window
Cite
Citations (65)
Cite
Citations (162)
Abstract During the 2011 magnitude 9 Tohoku-oki earthquake, very large slip occurred on the shallowest part of the subduction megathrust. Quantitative information on the shallow slip is of critical importance to distinguishing between different rupture mechanics and understanding the generation of the ensuing devastating tsunami. However, the magnitude and distribution of the shallow slip are essentially unknown due primarily to the lack of near-trench constraints, as demonstrated by a compilation of 45 rupture models derived from a large range of data sets. To quantify the shallow slip, here we model high-resolution bathymetry differences before and after the earthquake across the trench axis. The slip is determined to be about 62 m over the most near-trench 40 km of the fault with a gentle increase towards the trench. This slip distribution indicates that dramatic net weakening or strengthening of the shallow fault did not occur during the Tohoku-oki earthquake.
Cite
Citations (86)
Abstract The 2011 Tohoku-Oki earthquake generated a surprisingly large near-trench slip, and earth scientists have devoted significant attention to understanding why. Some studies proposed special rupture mechanisms, such as extensive dynamic frictional weakening; others simulated this near-trench slip behavior without supposing the extensive dynamic weakening. However, we have not reached a decisive conclusion for this question due to limited spatial near-trench slip resolution. Hence, in this study we use new tsunami data recorded just above the large slip area in addition to offshore and onshore geodetic data to improve the spatial resolution of stress release in the Tohoku-Oki earthquake and quantitatively examine the mechanical state of the plate interface. A maximum slip of 53 m reaching the trench and an insignificant stress drop (< 3 MPa) at the shallowest portion of the fault were estimated. Based on our modeling results and the past experimental studies, it is suggested that friction at the shallow near-trench portion should be inherently low both before and during the earthquake. This result provides perspectives on the shallow slip behavior along the plate boundary, in which the strain energy accumulation at the deep portion of the fault accounts for the anomalous large shallow slip, but shallow mechanical coupling does not. A large shallow slip has been considered as a result of the release of sufficiently large strain energy at the shallow portion of the plate interface, but we suggest that shallow slips similar to that during the 2011 Tohoku-Oki earthquake may occur in any subduction zones where the energy sufficiently accumulates only in the deeper portion.
Cite
Citations (11)
Abstract The near‐trench behavior of subduction megathrust faults is critical for understanding earthquake hazard and tsunami generation. The shallow subduction interface is typically located in unconsolidated sediments that are considered too weak to accumulate elastic strain. However, the spectrum of shallow fault slip behavior is still elusive, due in large part to the lack of near‐field observations. Here we combine measurements from seafloor pressure sensors near the trench and an onshore GPS network in a time‐dependent inversion to image the initiation and migration of a well‐documented slow slip event (SSE) in 2007 at the Nicoya Peninsula, Costa Rica. Our results show that the shallow SSE initiated on the shallow subduction interface at a depth of ~15 km, where pore fluid pressure is inferred to be high, and propagated all the way to the trench. The migrating event may have triggered a second subevent that occurred 1 month later. Our results document the release of elastic strain at the shallow part of the subduction megathrust and suggest prior accumulation of elastic strain. In conjunction with near‐trench shallow slow slip recently reported for the Hikurangi subduction zone and trench breaching ruptures revealed in some large earthquakes, our results suggest that near‐trench strain accumulation and release at the shallower portions of the subduction interface is more common than previously thought.
Seafloor Spreading
Cite
Citations (20)
Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone
Slip events with an average duration of about 10 days and effective total slip displacements of severalc entimetres have been detected on the deeper (25 to 45 km) part of the northern Cascadia subduction zone interface by observing transient surface deformation on a network of continuously recording Global Positioning System (GPS) sites. The slip events occur down-dip from the currently locked, seismogenic portion of the subduction zone, and, for the geographic region around Victoria, British Columbia, repeat at 13 to 16 month intervals. These episodes of slip are accompanied by distinct, low-frequency tremors, similar to those reported in the forearc region of southern Japan. Although the processes which generate this phenomenon of episodic tremor and slip (ETS) are not well understood, it is possible that the ETS zone may constrain the landward extent of megathrust rupture, and conceivable that an ETS event could precede the next great thrust earthquake.
Forearc
Cite
Citations (171)
In the southernmost Kuril Trench, the tsunami source regions vary their along-trench extent even among earthquakes occurring within the same segment. Recent studies suggest that the tsunami source of the 1952 Tokachi-oki earthquake (M 8.1) differs from but partially overlaps with that of the 2003 Tokach-oki earthquake (M 8.0). Furthermore, the along-trench extent among the earthquakes seems to differ between deep and shallow portions of the subduction interface. A seismic gap has been recognized along the deep subduction interface between the sources of the 1952 and 1973 earthquakes. We propose that the gap is now larger, including both shallow to deep portions of the interface between the 1973 and 2003 earthquakes. Variability in spatial extent of large subduction earthquakes in both along-trench direction and trench-normal direction makes it difficult to forecast future earthquakes in the southernmost Kuril Trench.
Cite
Citations (0)