logo
    Evidence of climate change impact upon glaciers’ recession within the Italian Alps
    60
    Citation
    74
    Reference
    10
    Related Paper
    Citation Trend
    In 1929, 17 glaciers were identified on Mount Kenya. Later, the glacier inventory of 2004 reported the presence of only 10 glaciers, which were reduced to only 9 in 2016 as documented in the revised glacier inventory published in 2018. In this study, we confirm the existence of eight glaciers by comparing changes in the surface elevation of digital surface models (DSMs). The models are created based on Pleiades satellite images from February 17, 2016 and on digital images acquired from a Cessna aircraft on August 19, 2018. Although the revised glacier inventory of 2016 included Northey Glacier, we are not able to confirm any change in the surface elevation of this glacier. Therefore, it is likely that Northey Glacier could represent a seasonal snow patch without an ice body. The comparison between the DSMs of 2016 and 2018 shows that the surface area of all eight glaciers had declined, indicating a negative mass balance. The average annual mass balance of the six glaciers is found to be −1.4 m w.e./a. The significantly smaller Darwin (0.0039 km2), Heim (0.0025 km2), and Diamond (0.00034 km2) glaciers might represent disappearing glaciers with stagnant ice, which have transitioned from active glaciers.
    Glacier mass balance
    Glacier morphology
    Cirque glacier
    Glacier ice accumulation
    Tidewater glacier cycle
    Abstract Liligo Glacier is a small glacier located in a transverse valley, which flows on the south side of Baltoro Glacier, Karakoram, Pakistan. Terminus variations of Liligo Glacier since 1892 were reconstructed using various methods and sources (historical documents, cartography, photographs, satellite images and field surveys). The glacier is characterized by two phases of strong advance (beginning and end of the 20th century), separated by at least half a century of retreat. The advance rates, together with some ice-surface features such as the heavily crevassed surface and terminus morphology, are considered to be indicative of a surge-type glacier.
    Glacier morphology
    Glacier ice accumulation
    Tidewater glacier cycle
    Glacier mass balance
    Glacier terminus
    Cirque glacier
    Ice caps
    Citations (36)
    Abstract. Knowledge about the occurrence and characteristics of surge-type glaciers is crucial due to the impact of surging on glacier melt and glacier-related hazards. One of the super-clusters of surge-type glaciers is High Mountain Asia (HMA). However, no consistent region-wide inventory of surge-type glaciers in HMA exists. We present a regionally resolved inventory of surge-type glaciers based on their behaviour across High Mountain Asia between 2000 and 2018. We identify surge-type behaviour from surface velocity, elevation and feature change patterns using a multi-factor remote sensing approach that combines yearly ITS_LIVE velocity data, DEM differences and very-high-resolution imagery (Bing Maps, Google Earth). Out of the ≈95 000 glaciers in HMA, we identified 666 that show diagnostic surge-type glacier behaviour between 2000 and 2018, which are mainly found in the Karakoram (223) and the Pamir regions (223). The total area covered by the 666 surge-type glaciers represents 19.5 % of the glacierized area in Randolph Glacier Inventory (RGI) V6.0 polygons in HMA. Only 68 glaciers were already identified as “surge type” in the RGI V6.0. We further validate 107 glaciers previously labelled as “probably surge type” and newly identify 491 glaciers, not previously reported in other inventories covering HMA. We finally discuss the possibility of self-organized criticality in glacier surges. Across all regions of HMA, the surge-affected area within glacier complexes displays a significant power law dependency with glacier length.
    Accumulation zone
    Citations (0)
    ALPS: AUSTRIAN: An overview is provided on the occurrence of the glaciers in the Eastern Alps of Austria and on the climatic conditions in this area, Historical documents on the glaciers have been available since the Middle Ages. Special glaciological observations and topographic surveys of individual glaciers were initiated as early as 1846. Recent data in an inventory based on aerial photographs taken in 1969 show 925 glaciers in the Austrian Alps with a total area of 542 square kilometers. Present research topics include studies of mass and energy balance, relations of glaciers and climate, physical glaciology, a complete inventory of the glaciers, and testing of remote sensing methods. The location of the glacier areas is shown on Landsat multispectral scanner images; the improved capabilities of the Landsat thematic mapper are illustrated with an example from the Oztaler Alpen group. ALPS: SWISS: According to a glacier inventory published in 1976, which is based on aerial photography of 1973, there are 1,828 glacier units in the Swiss Alps that cover a total area of 1fl42 square kilometers. The Rhonegletscher, currently the ninth largest in the country, was one of the first to be studied in detail. Its surface has been surveyed repeatedly; velocity profiles were measured, and the fluctuations of its terminus were mapped and recorded from 1874 to 1914. Recent research on the glacier has included climatological, hydrological, and massbalance studies. Glaciological research has been conducted on various other glaciers in Switzerland concerning glacier hydrology, glacier hazards, fluctuations of glacier termini, ice mechanics, ice cores, and mass balance. Good maps are available showing the extent of glaciers from the latter decades of the 19th century. More recently, the entire country has been mapped at scales of 1:25,000, 1:50,000, 1:100,000, 1:200,000, and 1:500,000. The 1:25,000-scale series very accurately represents the glaciers as well as locates supraglacial morainic debris and crevasses. The maps are revised every 6 years by use of aerial photogrammetric methods. The possibility of producing a glacier inventory by combining the topographic maps with Landsat digital and visual data is discussed. ALPS: FRENCH: The glaciers of the French Alps are distributed in four main groups and have a total area of 350 square kilometers. The northernmost group, on the Mont Blanc massif, has a glacier area of 110 square kilometers, which includes Met de Glace, which, with an area of 40 square kilometers, is the largest glacier in the Western Alps. Farther south, the Massif de la Vanoise contains 130 glaciers that have a total area of 85 square kilometers. The glaciers of the Grandes Rousses massif have a total area of 11 square kilometers. Lastly, the Massif du Pelvoux has a total glacier area of 120 square kilometers. Studies of glacier variations since 1600 A.D. have shown numerous fluctuations in glacier length. The glaciers on Mont Blanc that appear to show similar fluctuations in fact have different individual response times. Mass-balance measurements are presently being carried out on nine glaciers. The measurements on one of these glaciers, Glacier de Saint Sorlin, have been used to validate a linear statistical model for mass-balance variation. The model seems to give good results when extended over the entire region of French Alpine glaciers. New methods of mass-balance reconstructions by use of a continuity equation are discussed. Current satellite data have limited usefulness for glacier studies in the French Alps, with the exception of the method correlating changes in the elevation of snowline to changes in glacier mass balance. ALPS: ITALIAN: Research carried out by Italian glaciologists in support of the World Glacier Inventory project identified approximately 1,400 glaciers in the mountain groups of the Italian Alps. The total surface area of all glaciers, glacierets, and permanent snow fields in Italy with
    Glacier mass balance
    Glacier morphology
    Cirque glacier
    Thematic Mapper
    Tidewater glacier cycle
    Citations (6)
    Abstract Glacier surging is a dynamic instability that affects the flow of some glaciers, modifying the glacier area, surface velocity, and surface elevation. It is also among the major causes of ice dams and glacier lake floods. Previous studies have shown that in the West Kunlun Mountains| (WKM) where a cluster of surge‐type glaciers had been found, the glaciers were relatively stable in recent years. Nevertheless, the surge cycle and its impact on glacier changes on a regional scale are poorly understood. In this study, we updated the surge‐type glacier inventory of the WKM using the detailed changes in glacier length, surface velocity, and surface elevation during the 1972–2020 period using 78 Landsat optical images, 86 Sentinel‐1 synthetic aperture radar (SAR) images, and three digital elevation models of the WKM. The updated results show that among the 423 glaciers in the WKM, 10 are confirmed as surge‐type glaciers, three are likely surge‐type glaciers, and five are possible surge‐type glaciers. Furthermore, these 18 glaciers account for 63% of the total glacier area. During the period analyzed, there were marked changes in the lengths, areas and surface elevations of all surge‐type glaciers, while those of the non‐surge‐type glaciers were relatively stable. These results appear to indicate that the observed regional trends of glaciers in the WKM recently may be related to the existence of surge‐type glaciers. Furthermore, the surge‐type glacier underwent advance after accelerating for 3–4 years, which could be used to forecast when glacier termini may advance and avoid the possible catastrophic damages.
    Glacier morphology
    Glacier mass balance
    Glacier ice accumulation
    Elevation (ballistics)
    Rock glacier
    Cirque glacier
    Citations (22)
    Abstract. Knowledge about the occurrence and characteristics of surge-type glaciers is crucial due to the impact of surging on glacier melt and glacier-related hazards. One of the super-clusters of surge-type glaciers is High Mountain Asia (HMA). However, no consistent region-wide inventory of surge-type glaciers in HMA exists. We present a regionally resolved inventory of surge-type glaciers based on their behaviour across High Mountain Asia between 2000 and 2018. We identify surge-type behaviour from surface velocity, elevation and feature change patterns using a multi-factor remote sensing approach that combines yearly ITS_LIVE velocity data, DEM differences and very-high-resolution imagery (Bing Maps, Google Earth). Out of the ≈95 000 glaciers in HMA, we identified 666 that show diagnostic surge-type glacier behaviour between 2000 and 2018, which are mainly found in the Karakoram (223) and the Pamir regions (223). The total area covered by the 666 surge-type glaciers represents 19.5 % of the glacierized area in Randolph Glacier Inventory (RGI) V6.0 polygons in HMA. Only 68 glaciers were already identified as “surge type” in the RGI V6.0. We further validate 107 glaciers previously labelled as “probably surge type” and newly identify 491 glaciers, not previously reported in other inventories covering HMA. We finally discuss the possibility of self-organized criticality in glacier surges. Across all regions of HMA, the surge-affected area within glacier complexes displays a significant power law dependency with glacier length.
    Accumulation zone
    Citations (0)
    During the expeditions to Mt.Nyainqentanglha in the summer of 1999 and 2007,glacier termini had been surveyed using GPS technology for five glaciers around the mount.Comparing the terminus positions surveyed by the two GPS with those surveyed in 1970 reveal that five glaciers have retreated since 1970.The retreat rate of glacier termini is around 10.0 m·a-1 for the Lanong and Zhadang Glaciers in the northern slopes of the mount and the Panu Glacier in the southern slope during 1970-2007.However,retreat of the Xibu Glacier is dramatic with a rate of 38.9 m·a-1,while a small high-elevation glacier(5O270C0049) in the Panu basin has a low retreat rate of 4.8 m·a-1.A stream was observed in the 1970′s firn basin of the Panu Glacier,indicating that not only the glacier termini are retreating dramatically but also the ablation areas are expanding around the mount.
    Glacier mass balance
    Tidewater glacier cycle
    Glacier terminus
    Accumulation zone
    Cirque glacier
    Glacier morphology
    Firn
    Glacier ice accumulation
    Citations (30)
    Abstract. Knowledge about the occurrence and characteristics of surge-type glaciers is crucial due to the impact of surging on glacier melt and glacier-related hazards. One of the super-clusters of surge-type glaciers is High Mountain Asia (HMA). However, no consistent region-wide inventory of surge-type glaciers in HMA exists. We present a regionally resolved inventory of surge-type glaciers based on their behaviour across High Mountain Asia between 2000 and 2018. We identify surge-type behaviour from surface velocity, elevation and feature change patterns using a multi-factor remote sensing approach that combines yearly ITS_LIVE velocity data, DEM differences and very-high-resolution imagery (Bing Maps, Google Earth). Out of the ≈95 000 glaciers in HMA, we identified 666 that show diagnostic surge-type glacier behaviour between 2000 and 2018, which are mainly found in the Karakoram (223) and the Pamir regions (223). The total area covered by the 666 surge-type glaciers represents 19.5 % of the glacierized area in Randolph Glacier Inventory (RGI) V6.0 polygons in HMA. Only 68 glaciers were already identified as “surge type” in the RGI V6.0. We further validate 107 glaciers previously labelled as “probably surge type” and newly identify 491 glaciers, not previously reported in other inventories covering HMA. We finally discuss the possibility of self-organized criticality in glacier surges. Across all regions of HMA, the surge-affected area within glacier complexes displays a significant power law dependency with glacier length.
    Accumulation zone
    Citations (0)
    Abstract During the period 1966 to 1983 Milne Glacier advanced 4.25 km at a mean annual rate of 250 m a −1 . Since surges commonly occur over a two or three year period the maximum rate of advance could have been greater than 2 km a −1 . The glacier terminus has a number of features indicative of past surge behaviour. Of these, at least three looped moraines suggest surges of the main valley glacier and tributary glaciers. As Milne Glacier is a cold glacier, surges may possibly be thermally regulated Accumulation rates on the ice caps of northern Ellesmere Island are low hence a critical condition in the “reservoir area” will be only slowly attained. As a consequence the periodicity of surges in Milne Glacier and other High Arctic glaciers is expected to be high.
    Tidewater glacier cycle
    Glacier mass balance
    Glacier morphology
    Glacier ice accumulation
    Cirque glacier
    Accumulation zone
    Glacier terminus
    Citations (3)
    Glacier mass balance
    Tidewater glacier cycle
    Glacier morphology
    Cirque glacier
    Accumulation zone
    Glacier ice accumulation
    Glacier terminus
    Citations (35)