Abstract The Mt. Carlton Au-Ag-Cu deposit, northern Bowen basin, northeastern Australia, is an uncommon example of a sublacustrine hydrothermal system containing economic high-sulfidation epithermal mineralization. The deposit formed in the early Permian and comprises vein- and hydrothermal breccia-hosted Au-Cu mineralization within a massive rhyodacite porphyry (V2 open pit) and stratabound Ag-barite mineralization within volcano-lacustrine sedimentary rocks (A39 open pit). These orebodies are all associated with extensive advanced argillic alteration of the volcanic host rocks. Stable isotope data for disseminated alunite (δ34S = 6.3–29.2‰; δ18OSO4 = –0.1 to 9.8‰; δ18OOH = –15.3 to –3.4‰; δD = –102 to –79‰) and pyrite (δ34S = –8.8 to –2.7‰), and void-filling anhydrite (δ34S = 17.2–19.2‰; δ18OSO4 = 1.8–5.7‰), suggest that early advanced argillic alteration formed within a magmatic-hydrothermal system. The ascending magmatic vapor (δ34SΣS ≈ –1.3‰) was absorbed by meteoric water (~50–60% meteoric component), producing an acidic (pH ≈ 1) condensate that formed a silicic → quartz-alunite → quartz-dickite-kaolinite zoned alteration halo with increasing distance from feeder structures. The oxygen and hydrogen isotope compositions of alunite-forming fluids at Mt. Carlton are lighter than those documented at similar deposits elsewhere, probably due to the high paleolatitude (~S60°) of northeastern Australia in the early Permian. Veins of coarse-grained, banded plumose alunite (δ34S = 0.4– 7.0‰; δ18OSO4 = 2.3–6.0‰; δ18OOH = –10.3 to –2.9‰; δD = –106 to –93‰) formed within feeder structures during the final stages of advanced argillic alteration. Epithermal mineralization was deposited subsequently, initially as fracture- and fissure-filling, Au-Cu–rich assemblages within feeder structures at depth. As the mineralizing fluids discharged into lakes, they produced syngenetic Ag-barite ore. Isotope data for ore-related sulfides and sulfosalts (δ34S = –15.0 to –3.0‰) and barite (δ34S = 22.3–23.8‰; δ18OSO4 = –0.2 to 1.3‰), and microthermometric data for primary fluid inclusions in barite (Th = 116°– 233°C; 0.0–1.7 wt % NaCl), are consistent with metal deposition at temperatures of ~200 ± 40°C (for Au-Cu mineralization in V2 pit) and ~150 ± 30°C (Ag mineralization in A39 pit) from a low-salinity, sulfur- and metal-rich magmatic-hydrothermal liquid that mixed with vapor-heated meteoric water. The mineralizing fluids initially had a high-sulfidation state, producing enargite-dominated ore with associated silicification of the early-altered wall rock. With time, the fluids evolved to an intermediate-sulfidation state, depositing sphalerite- and tennantite-dominated ore mineral assemblages. Void-filling massive dickite (δ18O = –1.1 to 2.1‰; δD = –121 to –103‰) with pyrite was deposited from an increasingly diluted magmatic-hydrothermal liquid (≥70% meteoric component) exsolved from a progressively degassed magma. Gypsum (δ34S = 11.4–19.2‰; δ18OSO4 = 0.5–3.4‰) occurs in veins within postmineralization faults and fracture networks, likely derived from early anhydrite that was dissolved by circulating meteoric water during extensional deformation. This process may explain the apparent scarcity of hypogene anhydrite in lithocaps elsewhere. While the Mt. Carlton system is similar to those that form subaerial high-sulfidation epithermal deposits, it also shares several key characteristics with magmatic-hydrothermal systems that form base and precious metal mineralization in shallow-submarine volcanic arc and back-arc settings. The lacustrine paleosurface features documented at Mt. Carlton may be useful as exploration indicators for concealed epithermal mineralization in similar extensional terranes elsewhere.
A special metamorphic core complex underlain by a low-angle strike-slip ductile shear zone is present near Chifeng in eastern Inner Mongolia, northern China. The geology of the study area is similar to that of several Cordilleran metamorphic core complexes, but contrasts in significant ways as well. A major ESE-dipping normal fault, the Louzidian Range frontal fault, formed during Late Cretaceous extension. This fault separates a crystalline footwall locally containing mylonitic basement gneisses and granitic rocks (0 to >3 km thick) from a non-metamorphic hanging wall that is distended by normal faults. However, the shear sense of the underlying mylonitic shear zone, a low-angle strike-slip zone, is not compatible with the Louzidian fault. It may be related to a pre-Cretaceous regional sinistral strike-slip event rather than the Late Cretaceous regional crustal extension common throughout eastern China. Pre-existing mylonitic fabric anisotropy appears to have controlled the development of the Louzidian normal fault. Chloritic breccias locally developed along the fault indicate that it cut deeply into the crust of northern China.
Oligocene to Miocene postcollisional porphyry Cu deposits in the Gangdese belt in southern Tibet contain total resources of >20 million metric tons (Mt) Cu and are genetically associated with granodioritic-quartz monzogranitic porphyry intrusions with adakite-like signatures (e.g., Sr/Y >40). The adakite-like magmatic rocks in the southern sub-belt of the eastern Gangdese belt (east of 87° E) range in age from ca. 38 to 18 Ma, whereas those in the northern sub-belt range in age from ca. 21 to 10 Ma. Mineralization ages of the porphyry Cu deposits in the eastern Gangdese belt also show a decreasing trend from south to north, with the deposits in the southern sub-belt being ca. 30 Ma and the deposits in the northern sub-belt, 21 to 13 Ma. Many more of the adakite-like intrusions in the northern part are associated with porphyry copper deposits, compared with those in the southern part. The adakite-like intrusions exhibit high SiO2 (>60 wt %), Al2O3 (mostly >15 wt %), K2O (>2 wt %), and Sr (>300 ppm); low Y ( 80 km) into the lower part (~60–70 km) of the lower crust, together with direct input of fluid liberated from the subducting Indian continental plate, resulted in H2O-added melting of the Tibetan lower crust, generating H2O-rich adakite-like magmas in the eastern Gangdese belt.
The adakite-like rocks in the western Gangdese have very similar geochemical compositions to those in the eastern Gangdese, and their generation can also be explained by the melting of subduction-modified mafic lower crust with input of ultrapotassic melt. However, in contrast, colder (5°–8°C/km geotherm) subduction of the Indian continental plate and the opposite younging trend from north to south for the postcollisional adakite-like and ultrapotassic rocks in the western Gangdese belt suggests that the generation of the adakite-like rocks in the west was triggered by a different geodynamic process, which is most likely roll-back and gradual break-off of the northward subducting Indian slab from north to south.
We suggest that H2O in the postcollisional ore-related magmas originated from dehydration reactions in the upper parts of the subducting continental plate. Thermal structure of the continental subduction zone and the amount of continental crust subducted to depth seem to be two critical controls on the generation of porphyry Cu deposits in the Tibetan postcollisional setting.
The major, minor and trace element chemistry of chlorite were evaluated as a tool for mineral exploration in the propylitic environment of porphyry ore deposits. Chlorite from eighty propylitically altered samples, located up to 5 km from the Batu Hijau Cu–Au porphyry deposit in Indonesia, was analyzed using electron microprobe and laser ablation inductively-coupled plasma mass spectrometry. The results show that a variety of elements, including K, Li, Mg, Ca, Sr, Ba, Ti, V, Mn, Co, Ni, Zn and Pb, are probably incorporated in the chlorite lattice and display systematic spatial variations relative to the porphyry center. Ti, V and Mg decrease exponentially in concentration with increasing distance, whereas the others increase. Ratioing the former to the latter provides a variety of ratios that vary up to four orders of magnitude, providing sensitive vectoring parameters. Chlorite geothermometry suggests that Ti is substituted into chlorite as a function of crystallization temperature and thus maps out the thermal anomaly associated with the mineralized center. By contrast, Mn and Zn display a maximum in chlorite at a distance of ~ 1.3 km that mirrors the whole rock anomaly for these metals, reflecting their lateral advection into the wall rocks by magmatic-hydrothermal fluids. The recognizable footprint defined by chlorite compositions extends to at least 4.5 km, significantly beyond the whole rock anomalism (≤ 1.5 km) and thus represents a powerful new exploration tool for detecting porphyry systems. Variations in chlorite chemistry are very systematic in the inner propylitic zone (to distances of ~ 2.5 km), thereby providing a precise vectoring tool in a domain where other tools are typically ineffective. In this zone, equations of the form:x=lnRabcan be formulated, where the distance to center, x, is predicted based on a variety of element ratios in chlorite R, and where a and b are exponential fit parameters. Importantly, distal chlorite compositions in porphyry-related propylitic alteration systems are also shown to be distinct from metamorphic chlorite, allowing the external fringes of porphyry-related hydrothermal systems to be distinguished from "background" regional metamorphism or geothermal alteration.
Abstract Based on the Rb‐Sr isochron dating results, this paper suggests that the alkaline intrusive belt at the east foot of the Taihang‐Da Hinggan Mountains were formed between 135 and 122 Ma. And the alkaline intrusives in the north and south sections of this belt have entirely different Sr, Nd and Pb isotopic characteristics, i.e., all the rocks in the south section have positive ɛ Sr ( t ) and negative ɛ Nd ( t ) values and all those in the north have the opposite values. On the ɛ Sr ( t ) versus ɛ Nd ( t ) correlation diagram, the samples from the south are concentrated along the enriched mantle evolution trend lines and nearby, while those from the north fall along the depleted mantle trend lines and nearby. On the Pb isotope composition diagram, most of the samples from the south section fall on the mantle Pb evolution line and nearby, while those from the north lie between the Pb evolution lines of the mantle and the orogenic belt. The above‐stated isotopic characteristics not only indicate that the source rocks of the alkaline intrusives in the south section have a close connection to materials from the enriched mantle reservoir, while those in the north are related to materials from the depleted one, but also reveal that the upper mantle below the North China platform is enriched and that below the Inner Mongolia geosyncline is depleted.
Abstract Skarn deposits are one of the most common deposit types in China. The 386 skarns summarized in this review contain ~8.9 million tonnes (Mt) Sn (87% of China’s Sn resources), 6.6 Mt W (71%), 42 Mt Cu (32%), 81 Mt Zn-Pb (25%), 5.4 Mt Mo (17%), 1,871 tonnes (t) Au (11%), 42,212 t Ag (10%), and ~8,500 Mt Fe ore (~9%; major source of high-grade Fe ore). Some of the largest Sn, W, Mo, and Zn-Pb skarns are world-class. The abundance of skarns in China is related to a unique tectonic evolution that resulted in extensive hydrous magmas and widespread belts of carbonate country rocks. The landmass of China is composed of multiple blocks, some with Archean basements, and oceanic terranes that have amalgamated and rifted apart several times. Subduction and collisional events generated abundant hydrous fertile magmas. The events include subduction along the Rodinian margins, closures of the Proto-Tethys, Paleo-Asian, Paleo-Tethys, and Neo-Tethys Oceans, and subduction of the Paleo-Pacific plate. Extensive carbonate platforms developed on the passive margins of the cratonic blocks during multiple periods from Neoarchean to Holocene also facilitated skarn formation. There are 231 Ca skarns replacing limestone, 15 Ca skarns replacing igneous rocks, siliciclastic sedimentary rocks, or metamorphic silicate rocks, 113 Ca-Mg skarns replacing dolomitic limestone or interlayered dolomite and limestone, and 28 Mg skarns replacing dolomite in China. The Ca and Ca-Mg skarns host all types of metals, as do Mg skarns, except for major Cu and W mineralization. Boron mineralization only occurs in Mg skarns. The skarns typically include a high-temperature prograde stage, iron oxide-rich higher-temperature retrograde stage, sulfide-rich lower-temperature retrograde stage, and a latest barren carbonate stage. The zoning of garnet/pyroxene ratios depends on the redox state of both the causative magma and the wall rocks. In an oxidized magma-reduced wall-rock skarn system, such as is typical of Cu skarns in China, the garnet/pyroxene ratio decreases, and garnet color becomes lighter away from the intrusion. In a reduced intrusion-reduced wall-rock skarn system, such as a cassiterite- and sulfide-rich Sn skarn, the skarn is dominated by pyroxene with minor to no garnet. Manganese-rich skarn minerals may be abundant in distal skarns. Metal associations and endowment are largely controlled by the magma redox state and degree of fractionation and, in general, can be grouped into four categories. Within each category there is spatial zonation. The first category of deposits is associated with reduced and highly fractionated magma. They comprise (1) greisen with Sn ± W in intrusions, grading outward to (2) Sn ± Cu ± Fe at the contact zone, and farther out to (3) Sn (distal) and Zn-Pb (more distal) in veins, mantos, and chimneys. The second category is associated with oxidized and poorly to moderately fractionated magma. Ores include minor porphyry-style Mo and/or porphyry-style Cu mineralization ± Cu skarns replacing xenoliths or roof pendants inside intrusions, zoned outward to major zones of Cu and/or Fe ± Au ± Mo mineralization at the contact with and in adjacent country rocks, and farther out to local Cu (distal) + Zn-Pb (more distal) in veins, mantos, and chimneys. Oxidized and highly fractionated magma is associated with porphyry Mo or greisen W inside an intrusion, outward to Mo and/or W ± Fe ± Cu skarns at the contact zone, and farther to Mo or W ± Cu in distal veins, mantos, and chimneys. The final category is associated with reduced and poorly to moderately fractionated magma. No major skarns of this type have been recognized in China, but outside China there are many examples of such intrusions related to Au-only skarns at the contact zone. Reduced Zn-Au skarns in China are inferred to be distal parts of such systems. Tungsten and Sn do not occur together as commonly as was previously thought. The distal part of a skarn ore system may transition to carbonate replacement deposits. Distal stratabound mantos and crosscutting veins/chimneys may contain not only Zn-Pb but also major Sn, W, Cu, Mo, and Au mineralization. The Zn-Pb mineralization may be part of either an oxidized system (e.g., Cu, Mo, Fe) or a reduced system (e.g., Sn). In China, distal Zn-Pb is more commonly related to reduced magmas. Gold and W may also be related to both oxidized and reduced magmas, although in China they are more typically related to oxidized magma. There are numerous examples of distal mantos/chimneys that continuously transition to proximal skarns at intrusion-wall-rock contact zones, and this relationship strongly supports the magmatic affiliation of such deposits and suggests that distal skarns/carbonate replacement deposits systems should be explored to find more proximal mineralization. Carbonate xenoliths or roof pendants may host the majority of mineralization in some deposits. In contact zones, skarns are better developed where the intrusion shape is complicated. The above two skarn positions imply that there may be multiple skarn bodies below drill interceptions of intrusive rocks. Many of the largest skarns for all commodities in China are related to small or subsurface intrusions (except for Sn skarns), have multiple mineralization centers, are young (<~160 Ma), and have the full system from causative intrusion(s) to distal skarns or carbonate replacement extensions discovered. Chinese skarn deposits fall in several age groups: ~830, ~480 to 420, ~383 to 371, ~324 to 314, ~263 to 210, ~200 to 83, ~80 to 72, and ~65 to 15 Ma. They are typically associated with convergent plate boundaries, mostly in subduction settings but also in collisional settings. Seven major skarn metallogenic belts are recognized based on skarn geographic location and geodynamic background. In subduction settings, skarns may form in a belt up to 4,000 km long and 1,000 km inland, with skarns continuously forming for up to 120 m.y., e.g., the eastern China belt. In most other belts, skarns form in 5- to 20-m.y. episodes similar to the situation in South America. In collisional settings, skarns may form up to 50 m.y. after an ocean closure, and the distance to the collisional/accretionary boundary may extend to ~150 km inland. The size of collision-related skarns may be as large as the largest skarns related to oceanic crust subduction. Older suture zones may be favorable sites for younger mineralization, for example, the Triassic Paleo-Tethys suture between the North and South China blocks for the younger and largest skarn cluster of the Middle-Lower Yangtze belt in the eastern China belt, and the Triassic sutures in southwestern China for Cretaceous to Tertiary mineralization.
Monzonitic granite porphyry and quartz-phyric porphyry are related to hydrothermal alteration and Fe-Cu-Pb-Zn mineralization at the Qiagong skarn deposit in the middle part of the Gangdese mineralization belt, Tibet, China. Both of the intrusions are peraluminous. The monzonitic granite porphyry has a high-K calcalkaline composition whereas the quartz-phyric porphyry is shoshonitic. Zircons from these two porphyries were dated using the LA-ICP-MS method and the U-Pb ages are 68.8 ±2.2 Ma and 64.6 ±1.6 Ma, respectively. The ages and metal associations for these two intrusions are unique in the Gangdese belt, and may lead to new understandings of the geodynamic setting.
Abstract Ninety-eight underground diamond holes (~102 km) drilled by Far Southeast Gold Resources Inc. at the Far Southeast porphyry Cu-Au deposit, Philippines, from 2011 to mid-2013, provide a three-dimensional exposure of the deposit between 700- and –750-m elevation, with surface at ~1,400-m elevation. Far Southeast contains an inferred resource of 891.7 million tonnes (Mt) averaging 0.7 g/t Au and 0.5 wt % Cu, equivalent to 19.8 Moz Au and 4.5 Mt Cu. This contribution reports the spatial and temporal distribution of alteration and mineralization at Far Southeast, notably a white-mica–chlorite-albite assemblage that formed after early secondary biotite and before late quartz–white-mica–pyrite alteration and that is associated with the highest copper and gold grades. Alteration assemblages were determined by drill core logging, short-wavelength infrared (SWIR) spectral analysis, petrographic examination, and a quantitative evaluation of materials by scanning electron microscopy (QEMSCAN) study. Alteration is limited around sparse veins or pervasive where vein density is high and the alteration halos coalesce. The alteration and mineralization zones with increasing depth are as follows: (1) the lithocap of quartz-alunite–dominated advanced argillic-silicic alteration that hosts part of the Lepanto high-sulfidation Cu-Au epithermal deposit (mostly above ~700-m elevation), (2) an aluminosilicate-dominated zone with coexisting pyrophyllite-diaspore ± kandite ± alunite and white mica (~700- to ~100-m elevation), (3) porphyry-style assemblages characterized by stockwork veins (below ~500-m elevation), (4) the 1 wt % Cu equivalent ore shell (~400- to –300-m elevation), and (5) an underlying subeconomic zone (about –300- to –750-m elevation, the base of drilling). The ore shells have a typical bell shape centered on a dioritic intrusive complex. The paragenetic sequence of the porphyry deposit includes stage 1 granular gray to white quartz-rich (± anhydrite ± magnetite ± biotite) veins with biotite-magnetite alteration. These were cut by stage 2 lavender-colored euhedral quartz-rich (± anhydrite ± sulfides) veins, with halos of greenish white-mica–chlorite-albite alteration. The white mica is largely illite, with an average 2,203-nm Al-OH wavelength position. The albite may reflect the mafic nature of the diorite magmatism. The quartz veins of this stage are associated with the bulk of copper deposited as chalcopyrite and bornite, as well as gold. Thin Cu sulfide (chalcopyrite, minor bornite) veins with minor quartz and/or anhydrite (paint veins), with or without a white-mica halo, also occur. These veins were followed by stage 3 anhydrite-rich pyrite-quartz veins with white-mica (avg 2,197 nm, illite)–pyrite alteration halos. Combined with previous studies, we conclude that this porphyry system, including the Far Southeast porphyry and Lepanto high-sulfidation Cu-Au deposits, evolved over a period of 0.1–0.2 m.y. Three diorite porphyry stocks were emplaced, and by ~1.4 Ma biotite-magnetite–style alteration formed with quartz-anhydrite veins and deposition of ≤0.5% Cu and ≤0.5 g/t Au (stage 1); coupled with this alteration style, a barren lithocap of residual quartz with quartz-alunite halo plus kandite ± pyrophyllite and/or diaspore formed at shallower depth (>700-m elevation). Subsequently, lavender quartz and anhydrite veins with bornite and chalcopyrite (high-grade stage, avg ~1 wt % Cu and ~1 g/t Au) and white-mica–chlorite-albite halos formed below ~400-m elevation (stage 2). They were accompanied by local pyrite replacement, the formation of hydrothermal breccias and Cu sulfide (paint) veins. Stage 2 was followed at ~1.3 Ma by the formation of igneous breccias largely along the margins of the high-grade zones and stage 3 pyrite-quartz-anhydrite ± chalcopyrite veins with white-mica (mostly illitic) halos. At shallower depths in the transition to the base of the lithocap, cooling led to the formation of aluminosilicate minerals (mainly pyrophyllite ± diaspore ± dickite) with anhydrite plus high-sulfidation-state sulfides and pyrite veinlets. Consistent with previous studies, it is likely that the lithocap-hosted enargite-Au mineralization formed during this later period.