ABSTRACT A systematic study of alluaudite, hagendorfite, and varulite was done using single-crystal X-ray diffraction, powder diffraction, and electron probe microanalysis of samples from 12 separate localities. The crystal structures of the representative alluaudite and hagendorfite samples were refined to R1 indices of 3.7 and 1.8%, respectively, using a Siemens P4 automated four-circle diffractometer equipped with a graphite monochromator and MoKα X-radiation. These samples and several others were analyzed with an electron microprobe to study variations in chemical composition. For the single-crystal analyses, the resulting unit formulae are (Na0.11□0.89)(Na0.59Mn0.27Ca0.14)Mn1.00(Fe3+1.64Al0.24Mg0.13)(PO4)3 for alluaudite, (Na0.79□0.21)(Na0.81Mn2+0.19)(Mn0.70Fe2+0.30)(Fe2+1.72Mg0.27Al0.01)(PO4)3 for hagendorfite, and (Na0.84□0.16)(Na0.71Ca0.23□0.06)Mn1.00(Fe3+0.89Fe2+0.68Mn0.42Mg0.01)(PO4)3 for varulite. Originally, a nomenclature scheme was proposed for the alluaudite-group minerals that was based on sequentially distributing the cations in the cell according to increasing polyhedron size, matching that size with increasing ionic radii of the cations. For alluaudite, the structural formula was written as X(2)4X(1)4M(1)4M(2)8(PO4)12, with the sites ordered in decreasing size of the discrete polyhedra. Later, the formula [A(2)A(2)'A(2)”2][A(1)A(1)'A(1)”2]M(1)M(2)2(PO4)3 was proposed, which takes into account the distinct crystallographic sites in the channels of the structure. More recently there has been a revision to the nomenclature of the group. The simplified structural formula for the alluaudite-type is now A(2)'A(1)M(1)M(2)2(TO4)3; the new nomenclature scheme has been adopted by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA-CNMNC), based on the contents of the M(1) and M(2) octahedral sites, and the results are reviewed here. Compounds belonging to the alluaudite structural family have been the focus of synthetic mineral studies for decades owing to the open-framework architecture and their unique physical properties. Improvements in synthesis methods have allowed researchers to substitute a wide range of elements into the alluaudite structure.
Scanning proton microprobe analysis was used to determine the distribution of strontium (Sr) in otoliths from arctic charr (Salvelinus alpinus) of known non-anadromous, known anadromous, and unknown life histories. Strontium concentration patterns in otoliths of known non-anadromous charr were low and relatively flat (with little variation) from the core area to the outermost edge of the otolith, while patterns for known anadromous charr were characterized by a similar low, flat region for the first several years of life, followed by marked oscillatory increases and decreases in Sr content for the duration of the fish's life. Small and large forms of Lake Hazen charr of unknown life histories exhibited Sr profiles that were similar to those of the known non-anadromous charr, which strongly suggest that Lake Hazen charr are non-anadromous. These results indicate that Lake Hazen is a "closed" system with energy cycling primarily within the system; this conclusion suggests that a conservative approach would be appropriate for the management of the Lake Hazen charr population.
Otolith strontium and multi-year mark-recapture information were used to characterize associations between migration patterns and spawning frequencies in an anadromous Dolly Varden (Salvelinus malma) population (Rat River, Northwest Territories, Canada) that undertakes a long migration between freshwater spawning/overwintering (Fish Creek; a tributary to Rat River) and marine feeding habitats (Beaufort Sea) (~800 km round trip). Reconstructions of lifetime annual migration histories among otolith annuli was matched to information on reproductive status (current-year 'spawner' or 'non-spawner') that was known in two different, sometimes successive, years for each fish. Two migratory life histories were observed: fish either migrated annually after smoltification or periodically skipped an annual ocean migration to remain in freshwater and spawn. Different spawning frequencies were detected where fish not migrating annually tended to spawn in alternate years (84.6%) more often than those migrating annually (50%). Additionally, annually migrating fish had lower longevity (≤9 years vs. ≤13 years). The evaluation of differences in spawning frequency between sexes, independent of migration tactic, revealed males (84.6%) skipped spawning more often than females (51.2%) suggesting fitness trade-offs between life histories differ between sexes. Further, some fish returned from the sea considerably earlier than the majority of other current-year migrants. Our findings demonstrate intrapopulation diversity in migration behaviour and reproductive frequency.