The evolution of subtropical (30–35°N) upper ocean temperatures through the Cretaceous is inferred from the oxygen isotope compositions of 64 fish teeth (enamel) coming from the western Tethyan platform. Mean δ 18 O values of 22‰ at the Berriasian‐Valanginian boundary decrease, with oscillations to 18.5‰ around the Cenomanian‐Turonian boundary, and progressively increase to 21.5‰ by the end of the Cretaceous. The similarity of this oxygen isotope curve for bioapatites from platform environments with those for foraminifera and bulk carbonates that were deposited in deeper waters and at other paleolatitudes indicates that they record global climatic signals. Major cooling events at the million‐year scale can be distinguished: (1) at the Berriasian‐Valanginian boundary and (2) during the earliest Late Valanginian. A third cooling event is detected during the earliest Aptian. These events, already proposed as icehouse interludes during the lower Cretaceous, are also recorded at subtropical latitudes. A progressive warming is identified from the Aptian to the Cenomanian‐Turonian interval that corresponds to a thermal optimum, and then upper ocean temperatures decreased to the Maastrichtian. Minimum isotopic temperatures range from 15°C to 28°C, assuming a δ 18 O seawater of −1‰, for an ice‐free world. Taking more realistic δ 18 O seawater values of ∼0‰ for tropical waters, during glacial periods (within the Berriasian‐Valanginian interval, and earliest Aptian) or with above average salinities (possibly the Maastrichtian), temperatures are increased by 4–5°C. Temperature differences between climatic extremes of the Valanginian and Cenomanian‐Turonian are estimated to have been 10°C. Latitudinal thermal gradients for the Albian‐Cenomanian, Turonian, and Maastrichtian were 0.2–0.3°C/° latitude and thus weaker than modern oceanic values at about 0.4°C/° latitude.
The Mars Science Laboratory rover Curiosity landed in Gale crater (Mars) in August 2012. It has since been studying the lower part of the 5 km-high sedimentary pile that composes Gale’s central mound, Aeolis Mons. To assess the sedimentary record, the MSL team mainly uses a suite of imagers onboard the rover, providing various pixel sizes and fields of view from close to long-range observations. For this latter, we notably use the Remote Micro Imager (RMI), a subsystem of the ChemCam instrument that acts as 700 mm-focal length telescope, providing the smallest angular pixel size of the set of cameras on the Remote Sensing Mast. The RMI allows observations of remote outcrops up to a few kilometers away from the rover. As retrieving 3D information is critical to characterize the structures of the sedimentary deposits, we describe in this work an experiment aiming at computing for the first time with RMI Digital Outcrop Models of these distant outcrops. We show that Structure-from-Motion photogrammetry can successfully be applied to suitable sets of individual RMI frames to reconstruct the 3D shape and relief of these distant outcrops. These results show that a dedicated set of observations can be envisaged to characterize the most interesting geological features surrounding the rover.
Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both ~13.2 and ~10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.
Noachian-aged Jezero crater is the only known location on Mars where clear orbital detections of carbonates are found in close proximity to clear fluvio-lacustrine features indicating the past presence of a paleolake; however, it is unclear whether or not the carbonates in Jezero are related to the lacustrine activity. This distinction is critical for evaluating the astrobiological potential of the site, as lacustrine carbonates on Earth are capable of preserving biosignatures at scales that may be detectable by a landed mission like the Mars 2020 rover, which is planned to land in Jezero in February 2021. In this study, we conduct a detailed investigation of the mineralogical and morphological properties of geological units within Jezero crater in order to better constrain the origin of carbonates in the basin and their timing relative to fluvio-lacustrine activity. Using orbital visible/near-infrared hyperspectral images from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) along with high resolution imagery and digital elevation models, we identify a distinct carbonate-bearing unit, the "Marginal Carbonates," located along the inner margin of the crater, near the largest inlet valley and the western delta. Based on their strong carbonate signatures, topographic properties, and location in the crater, we propose that this unit may preserve authigenic lacustrine carbonates, precipitated in the near-shore environment of the Jezero paleolake. Comparison to carbonate deposits from terrestrial closed basin lakes suggests that if the Marginal Carbonates are lacustrine in origin, they could preserve macro- and microscopic biosignatures in microbialite rocks like stromatolites, some of which would likely be detectable by Mars 2020. The Marginal Carbonates may represent just one phase of a complex fluvio-lacustrine history in Jezero crater, as we find that the spectral diversity of the fluvio-lacustrine deposits in the crater is consistent with a long-lived lake system cataloging the deposition and erosion of regional geologic units. Thus, Jezero crater may contain a unique record of the evolution of surface environments, climates, and habitability on early Mars.