Despite increasing alarms over the health impacts of microplastics (MPs) due to their detection in human organs and feces, precise exposure evaluations remain scarce. To comprehend their risks, there is a distinct need to prioritize quantitive estimates in MP exposome, particularly at the environmentally-realistic level. Here we used a method rooted in real-world MP measurements and activity patterns to determine the daily intake of MPs through inhalation and from ground dust/soil ingestion. We found that nearly 80% of this intake comes from residential sectors, with activity intensity and behavioral types significantly affecting the human MP burden. The data showed a peak in MP exposure for those aged 18-64. When compared to dietary MP intake sources like seafood, salt, and water, we identified a previously underestimated exposure from inhalation and dust/soil ingestion, emphasizing the need for more realistic evaluations that incorporate activity factors. This discovery raises questions about the accuracy of past studies and underscores MP's potential health risks. Moreover, our time-based simulations revealed increased MP intake during the COVID-19 lockdown due to more surface dust ingestion, shedding light on how global health crises may inadvertently elevate MP exposure risks.
Microplastics as emerging contaminants have been detected from peaks to poles. High concerns on the risks of microplastic pollution to humans and ecosystems have therefore been raised in the past decade. While a large number of studies have been conducted to investigate the environmental levels and toxicity of microplastics, the information generated to support risk assessment is fragmented and the coherence between different types of study is largely lacking. Here we introduced the Aggregate Exposure Pathway (AEP), a conceptual framework originally proposed for chemical exposure assessment, to facilitate organization, visualization and evaluation of existing information generated from microplastic research, and to efficiently identify future knowledge and regulatory needs. A putative microplastic AEP network (mpAEP) was developed to demonstrate the concept and model development strategies. Two mpAEP case studies, with polyethylene (PE) as a prototype, were then presented based on existing environmental exposure data collected from the Changjiang Estuary and the East China Sea (Case I), and the Oslo Fjord (Case II), respectively. Weight of evidence (WoE) assessment of the mpAEPs were performed for evaluating the essentiality, theoretical plausibility, empirical evidence and quantitative understanding of the evidence and relationships in the AEPs. Both cases showed moderate/high WoE to support the strength of the models, whereas also displayed clear knowledge gaps, thus providing guidance for future investigations and regulations. The mpAEP framework introduced herein presents a novel strategy for organizing fragmented information from diverse types of microplastic research, enhancing mechanistic understanding of causal relationships and facilitating the development of quantitative prediction models for research and regulation in the future.