Abstract A palaeomagnetic study of samples from dykes in the Protogine Zone (PZ) south of Lake Vättern has yielded two characteristic magnetic components, A and B. A comparison with previous data and the Sveconorwegian Loop of the Fennoscandian Apparent Polar Wander Path (APWP) make it possible to estimate the age of the corresponding palaeomagnetic poles. They are situated close to the ‘Loop’, which indicates ages between ca 1100 and 850 Ma. The Loop is based mainly on three clusters of palaeopoles, two situated at low latitude and one at intermediate to high latitude. The possible configuration of the Loop is discussed. Keywords: PalaeomagnetismFennoscandiaProtogine ZoneremagnetisationSveconorwegian LoopAPWP
Abstract The supercontinent Pangea formed by the subduction of the Iapetus and Rheic oceans between Gondwana, Laurentia, and Baltica during mid-to-late Paleozoic times. However, there remains much debate regarding how this amalgamation was achieved. Most paleogeographic models based on paleomagnetic data argue that the juxtaposition of Gondwana and Laurussia (Laurentia-Baltica) was achieved via long-lasting highly oblique convergence in the late Paleozoic. In contrast, many geology-based reconstructions suggest that the collision between the two continents was likely initiated via a Gondwanan promontory comprising the Iberian, Armorican, and Bohemian massifs, and parts of the basement units in the Alpine orogen during the Early Devonian. To help resolve this discrepancy, we present an updated compilation of high-quality paleopoles of mid-to-late Paleozoic ages (spanning Middle Ordovician and Carboniferous times) from Gondwana, Laurentia, and Baltica. These paleopoles were evaluated with the Van der Voo selection criteria, corrected for inclination error where necessary, and were used to revise their apparent polar wander (APW) paths. The revised APW paths were constructed using an innovative approach in which age errors, A95 ovals, and Q-factors of individual paleopoles are taken into account. By combining the resulting APW paths with existing geological data and field relationships in the European Variscides, we provide mid-to-late Paleozoic paleogeographic reconstructions which indicate that the formation of Pangea was likely initiated at 400 Ma via the collision between Laurussia and a ribbon-like Gondwanan promontory that was itself formed by a scissor-like opening of the Paleotethys Ocean, and that the amalgamation culminated in the mostly orthogonal convergence between Gondwana and Laurussia.
Although geological comparisons between Australia and North America have provided a basis for various Neoproterozoic Rodinia reconstructions, quantitative support from precisely dated palaeomagnetic poles has so far been lacking. We report U–Pb ages and palaeomagnetic results for two suites of mafic sills within the intracratonic Bangemall Basin of Western Australia, one of which is dated at 1070 ± 6 Ma and carries a high‐stability palaeomagnetic remanence. Comparison of the Bangemall palaeopole with Laurentian data suggests that previous reconstructions of eastern Australia against either western Canada (SWEAT) or the western United States (AUSWUS) are not viable at 1070 Ma. This implies that the Pacific Ocean did not form by separation of Australia–Antarctica from Laurentia, and that up to 10 000 km of late Neoproterozoic passive margins need to be matched with other continental blocks within any proposed Rodinia supercontinent. Our results permit a reconstruction (AUSMEX) that closely aligns late Mesoproterozoic orogenic belts in north‐east Australia and southernmost Laurentia.