The tumor suppressor p53 is activated in response to cellular stress to prevent malignant transformation by activation of the DNA repair machinery to preserve the cell, or by induction of apoptosis to eliminate the cell should the damage prove irrevocable. The gene encoding p53 frequently undergoes inactivating mutations in many human cancers, but WT p53 is often expressed at high levels in melanoma, which, as judged from the malignant nature of the disease, fails to act as an effective tumor suppressor. Here we show that p53 directly up-regulates microRNA-149* (miR-149*) that in turn targets glycogen synthase kinase-3α, resulting in increased expression of Mcl-1 and resistance to apoptosis in melanoma cells. Although deficiency in miR-149* undermined survival of melanoma cells and inhibited melanoma growth in a mouse xenograft model, elevated expression of miR-149* was found in fresh human metastatic melanoma isolates, which was associated with decreased glycogen synthase kinase-3α and increased Mcl-1. These results reveal a p53-dependent, miR-149*–mediated pathway that contributes to survival of melanoma cells, provides a rational explanation for the ineffectiveness of p53 to suppress melanoma, and identifies the expression of miR-149* as a mechanism involved in the increased expression of Mcl-1 in melanoma cells.
Inositol polyphosphate 5-phosphatases can terminate downstream signalling of phosphatidylinositol-3 kinase; however, their biological role in the pathogenesis of cancer is controversial. Here we report that the inositol polyphosphate 5-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase, has a tumour suppressive role in melanoma. Although it is commonly downregulated in melanoma, overexpression of phosphatidylinositol 4,5-bisphosphate 5-phosphatase blocks Akt activation, inhibits proliferation and undermines survival of melanoma cells in vitro, and retards melanoma growth in a xenograft model. In contrast, knockdown of phosphatidylinositol 4,5-bisphosphate 5-phosphatase results in increased proliferation and anchorage-independent growth of melanocytes. Although DNA copy number loss is responsible for downregulation of phosphatidylinositol 4,5-bisphosphate 5-phosphatase in a proportion of melanomas, histone hypoacetylation mediated by histone deacetylases HDAC2 and HDAC3 through binding to the transcription factor Sp1 at the PIB5PA gene promoter appears to be another commonly involved mechanism. Collectively, these results establish the tumour suppressive role of phosphatidylinositol 4,5-bisphosphate 5-phosphatase and reveal mechanisms involved in its downregulation in melanoma. Inositol polyphosphate 5-phosphatases, such as PIB5PA, terminate signalling downstream of phosophoinositide-3 kinase; however, their biological roles remain unclear. Here the authors report that PIB5PA has a tumour suppressive role in melanoma.