The Jinchuan ultramafic body on the southwestern margin of the North China craton hosts a giant Ni-Cu-(PGE) deposit. This dike-like intrusion consists mainly of lherzolite, dunite, and minor pyroxenite. Fortly-seven vol% of the intrusion is composed of disseminated sulfide ore and minor massive and net-textured ores. Ore bodies occur commonly in the lower part of the intrusion; the largest contains about 50% of the total metallic resources in Jinchuan, and has a "flame-like" shape in vertical cross-section. The ultramafic rocks have high MgO (19-45 wt%), low CaO (<6.5 wt%) and Al2O3 (<7 wt%), and right-inclined chondrite-normalized REE patterns. These rocks contain variable Ir (0.4-17 ppb), Ru (0.6-21 ppb), Rh (0.05-8.4 ppb), Pt (0.6-196 ppb), and Pd (1.2-135 ppb), in general lower than those in the sulfide ores (2.9-110 ppb Ir, 3.3-260 ppb Ru, 1.5-237 ppb Rh, 6.9-3972 ppb Pt, and 15-532 ppb Pd). They have high Th/Nb (0.15-0.5) ratios and show primitive mantle-normalized trace element patterns with Nb-Ta negative anomalies, consistent with derivation from mantle magmas variably contaminated by crustal materials. Compositional heterogeneity of the disseminated sulfides cannot be accounted for by in-situ fractional crystallization, but is consistent with differentiation and sulfide segregation in a staging magma chamber at depth. We propose a compressive tectonic model in which injection of sulfide-poor, crystal-rich magmas from the upper part of the staging magma chamber was followed by injection of a sulfide-rich crystal-mush from the lower part of the staging magma chamber to form the Jinchuan body.
Subduction of oceanic plates beneath continental lithosphere is critical for understanding tectonic evolution and evaluation of prospecting and exploration. Within the Yidun Terrane (YDT) of southwestern China, a number of Mesozoic to Cenozoic granitoid intrusions are exposed and they are useful for investigating the tectonic evolution of the Paleo-Tethys system. However, Mesozoic magmatism of the northern portion of the YDT, remains ambiguous regarding to their magmatic spatial–temporal evolution and their mineralization potential. As the largest pluton in the northern YDT, the Cuojiaoma batholith mainly consists of monzogranite and granodiorite. In this study, we present new zircon U–Pb and molybdenite Re–Os ages, whole-rock geochemical, and zircon Hf–O isotopic data for the Cuojiaoma batholith. LA-ICP-MS zircon U-Pb dating of granodiorite and monzogranite exhibit ages of 221.8 ± 1.4 Ma (n = 22, MSWD = 2.4) and 216.7 ± 2.2 Ma (n = 14, MSWD = 0.03), respectively. A total of 9 molybdenite samples differing Re-Os model ages of 205.4 ± 3.3 and 220.6 ± 5.5 Ma, yield a robust weighted mean model age of 209.9 ± 1.8 Ma (MSWD = 2.4, n = 9) representing the depositional age of molybdenite. The monzogranite and granodiorite's mineralogical and geochemical characteristics indicate they are classified as (medium-) high-K calc-alkaline and metaluminous to weakly peraluminous I-type granite. Geochemically, they are enriched in large-ion lithophile elements (LILEs, e.g., Rb, U, K) and light rare earth elements (LREEs), and depleted in high-field-strength elements (HFSEs, e.g., Nb, Ta, Ti and P) and heavy rare earth elements (HREEs), and contain distinctly or slightly negative Eu anomalies and no significant Ce anomalies, indicating an affinity to classical island arc magma. Combined with their negative zircon εHf(t) values (−16.24 to −2.49 and −16.41 to −1.43) and two-stage Hf model ages (2019–1255 Ma and 2027–1200 Ma), plus their zircon δ18O values, which range from 5.96 to 8.01 and from 5.05 to 7.61 for monzogranite and granodiorite, respectively, these geochemical indexes indicate that the Cuojiaoma batholith shares similar petrogenesis to other intrusions within the YDT. The formation of the early granodiorite may be genetically related to the slab subduction and is most likely formed by mixture of lower crustal melts and mafic magma derived from partial melting of mantle wedge induced by the influx of slab derived melt (fluid). Subsequent slab break-off and the upwelling asthenosphere at ∼ 216 Ma to 210 Ma led to high heat flow and extensive melting of the overlying mantle wedge, followed by the highly crystallization differentiation, which finally contributed to the monzogranite and the subsequential disseminated molybdenite in a post-subduction extension setting. The northern YDT possesses high Mo metallogenic prospectivity, especially for the magmatic activity that dominantly by lower crustal melt and genetically related to the slab break-off occurred at ∼ 216 Ma and represented by the highly fractionated granite derived from the large Cuojiaoma granitic batholith.
The dolostone reservoir of the Middle Permian Maokou Formation in Eastern Sichuan has good prospects for oil and gas exploration. Study of dolomitizing genesis of the Maokou Formation is essential for predicting the distribution of the dolostone reservoir. Petrography, in situ geochemistry, Sr-Mg isotopes, and fluid inclusions were carried out on samples from the Maokou Formation in Eastern Sichuan in order to discuss the dolomitizing process. Based on mineral and textural characteristics, dolomites were divided into four components: partially clouded dolomite (PCD), mosaic-like dolomite (MLD), cloudy-centered and clear-rimmed dolomite (CACD), and saddle dolomite (SDD). Results indicate that the Maokou Formation in Eastern Sichuan mainly experienced two stages of dolomitization. PCD, MLD, and cloudy-centered dolomite (CCD) were formed during the early dolomitization. They all show turbid crystal planes and bright orange-red CL and have similar trace element contents, 87Sr/86Sr ratios, and rare-earth patterns, indicating that they might be formed in the same fluid. This is a period when dolomitizing fluids mainly migrated along pores or microcracks and replaced protogenetic calcites, which occurred in the shallow burial stage of the Maokou Formation before the Late Permian. Clear-rimmed dolomite (CRD) and SDD were formed in the late stage of dolomitization. They all have clean crystal planes and darkly red CL. CRD of the ERY profile has trace element contents, 87Sr/86Sr ratios, and rare-earth patterns similar to SDD of the HLCH profile and Well TL6, inferring that both may be formed in the same fluid. Combined with high SrO contents and homogenous temperatures of fluid inclusions of CRD and SDD and Mg-isotopic compositions, they were generated by hydrothermal dolomitization. The hydrothermal fluid stage is related to the movement of the Emeishan Large Igneous Province, which was made up of basaltic magmatic fluids mixing with the surface water. The hydrothermal fluid mainly migrated upwards along structural fractures or faults and filled in structural fractures, occurring in the Late Permian to Middle-Late Triassic.
By applying the theory of lead isotope tracing, this paper studied the geochemical features of the urban environmental lead isotope in Chengdu, including soil, atmospheric dust, and the sediment on the surface of some main river systems. The Pb isotopic compositions of soil are mainly close to those of the fuel and coal fly ash, which indicates that the contamination sources are mainly from coal fly ash, gasoline and diesel oil. In the zone with heavy traffic, the Pb isotopic composition of soil is close to that of fuel, in suburb it takes on the characteristic of coal fly ash. And the Pb isotopic compositions of atmospheric dust are mainly close to the fuel Pb, partly between fuel Pb and coal Pb, indicating that the Pb mainly comes from automotive emissions and a small quantity from coal fly ash. The Pb isotopic compositions of the river sediment are mainly within the range of the coal Pb, which reveals that the coal Pb is the dominating polluting sources.
The Qinling Orogenic Belt (QOB), formed by the subduction and collision between the North China Block (NCB) and the South China Block (SCB), is a key area for exploring the tectonic process and timing of integration between the two blocks. A range of tectonic models have been proposed with regard to the subduction and collision of the QOB, but controversy in the timing and integration process still remain debatable, especially in the late Palaeozoic orogeny. The South Qinling Belt (SQB) is located between the Shangdan and Mianlue sutures, widely dispersed sediments outcropped in the SQB provide natural ground for the detrital zircon study, that could trace the sedimentary provenance and continental crustal evolution history, thus provide important evidence for the late Palaeozoic evolutionary processes in the QOB. In this study, we applied a detailed geochronological U‐Pb zircon dating of the Silurian, Devonian and Permian sedimentary rocks from the SQB. The result of the U‐Pb isotopic data shows distinct age populations at 439–474 Ma of the Silurian samples, ca. 400–490 Ma of the Devonian samples and 260–310 Ma of the Permian samples, respectively. By comparing the regional geochronological data, we sum up that the Silurian detrital zircons are mainly derived from the SQB and the northern margin of SCB (N‐SCB), the Devonian detrital zircon age populations are dominated by the North Qinling Belt (NQB) and SQB and the Permian sediments mainly stemmed from the southern margin of the North China Block (S‐NCB) and the NQB. A mutual age population of the Devonian sediments at ca. 400–490 Ma from the NQB constrains the closure of the Shangdan Ocean between the NCB and the SCB before the middle Devonian times. Ca. 260 ~ 380 Ma age population of the Permian sediments show similarities with the age data from the northern margin of the NCB, indicating an uplift event of NQB before the late Permian, and further constrains the closure of Mianlue ocean later than Permian times.