Rare earth elements (REE) are essential raw materials used in modern technology. Current production of REE is dominated by hard-rock mining, particularly in China, which typically requires high energy input. In order to expand the resource base of the REE, it is important to determine what alternative sources exist. REE placers have been known for many years, and require less energy than mining of hard rock, but the REE ore minerals are typically derived from eroded granitic rocks and are commonly radioactive. Other types of REE placers, such as those derived from volcanic activity, are rare. The Aksu Diamas heavy mineral placer in Turkey has been assessed for potential REE extraction as a by-product of magnetite production, but its genesis was not previously well understood. REE at Aksu Diamas are hosted in an array of mineral phases, including apatite, chevkinite group minerals (CGM), monazite, allanite and britholite, which are concentrated in lenses and channels in unconsolidated Quaternary sands. Fingerprinting of pyroxene, CGM, magnetite and zircon have identified the source of the placer as the nearby Gölcük alkaline volcanic complex, which has a history of eruption throughout the Plio-Quaternary. Heavy minerals were eroded from tephra and reworked into basinal sediments. This type of deposit may represent a potential resource of REE in other areas of alkaline volcanism.
Security of supply of a number of raw materials is of concern for the European Union; foremost among these are the rare earth elements (REE), which are used in a range of modern technologies. A number of research projects, including the EURARE and ASTER projects, have been funded in Europe to investigate various steps along the REE supply chain. This paper addresses the initial part of that supply chain, namely the potential geological resources of the REE in Europe. Although the REE are not currently mined in Europe, potential resources are known to be widespread, and many are being explored. The most important European resources are associated with alkaline igneous rocks and carbonatites, although REE deposits are also known from a range of other settings. Within Europe, a number of REE metallogenetic belts can be identified on the basis of age, tectonic setting, lithological association and known REE enrichments. This paper reviews those metallogenetic belts and sets them in their geodynamic context. The most well-known of the REE belts are of Precambrian to Palaeozoic age and occur in Greenland and the Fennoscandian Shield. Of particular importance for their REE potential are the Gardar Province of SW Greenland, the Svecofennian Belt and subsequent Mesoproterozoic rifts in Sweden, and the carbonatites of the Central Iapetus Magmatic Province. However, several zones with significant potential for REE deposits are also identified in central, southern and eastern Europe, including examples in the Bohemian Massif, the Iberian Massif, and the Carpathians.