We present systematic U–Pb age data collected by laser ablation multi-collector inductively coupled plasma mass spectrometry, precise geochemical data, and Nd isotope data for igneous rocks from the southeastern Lesser Xing’an Range (SE LXR). The results indicate that the formation ages as follows: Maojiatun alkaline granite, 207.2 ± 0.84 Ma and 204.6 ± 0.93 Ma; Diorite porphyrite, 164.5 ± 0.97 Ma; and Tieli syenogranite, 186.7 ± 1.50 Ma. The alkaline granite has high silicon, potassium, alkali, and FeO T contents; it is enriched in high field strength elements, Zr, Hf, Th, Rb, and U; is depleted in Ba, Sr, Nb, Ta, P, Ti, etc.; and has high ratios of 10000Ga/Al. It shows an A 2 -type granite affinity. The Tieli alkali-feldspar granite has high total alkali contents and is enriched in high field strength elements and rare earth elements and depleted in Sr, Ba, Ti, and P, and shows varying degrees of alkalinity. Rocks from SE LXR display similar ε Nd (t) values with corresponding to Nd model ages of 1095 to 813 Ma. The igneous rocks from the SE LXR are proposed to be derived from melting of the Neoproterozoic lower crust and potential magma mixing with ancient crystalline basement. The formation of the Maojiatun alkaline granite occurred in response to a postorogenic event following the closure of the Paleo-Asian Ocean. However, the SE LXR exhibited an extensional back-arc tectonic setting in the Early Jurassic. The Middle Jurassic diorite porphyrite could be related to the temporary stagnation of the westward subduction of the Paleo-Pacific plate.
This article summarizes the geological setting, spatial-temporal distribution, and major-element, trace-element, and Nd-Sr-Pb isotopic compositional variation of rocks representative of Tibetan postcollisional magmatic activity. The implications of petrogenesis and spatial-temporal distribution are discussed in relation to lithospheric mantle heterogeneity and a possible role for collision-induced asthenospheric mantle flow. Rocks indicative of postcollisional volcanism are widely distributed across the terranes making up the Tibetan plateau. Three stages of activity are recognized (ca. 45–25, 25–5, and 5–0 Ma), mostly conforming to potassic to ultrapotassic shoshonitic and high-potassium calc-alkaline types. These show strong relative enrichments in large-ion lithophile elements (LILE), U, Th, and...
Large-scale Mesozoic granitoids are exposed in the Greater Khingan Mountains. Their relationship with the Mongolia–Okhotsk and the Paleo-Pacific Ocean is still under discussion and a matter of debate. In this study, field observations were made and a total of 18 granitoids exposed in the vicinity of the Heihe–Baishilazi area in the northern part of the Greater Khingan Mountains were sampled for petrological, geochronological, and geochemical research. In addition, to complement this study, 90 granitic samples from the Xinghua, Dajinshan, Yili, Chabaqi, and Sankuanggou areas in the Greater Khingan Mountains were compiled in order to reveal rock assemblages, magma sources, and then inquire into the tectonic background. Zircon LA–ICP–MS U–Pb dating indicates that two samples from the Heihe area were formed in the Early Jurassic period (194.2 ± 1.4 Ma and 183.1 ± 1.3 Ma), and the εHf(t) values and TDM2 of the zircons were mainly +5.8 to +10.7 and 528 Ma to 834 Ma, respectively, with a large variation range. The intrusive rocks from the Greater Khingan Mountains (108 in total) belonging to the T1T2G1G2 assemblage contained tonalites (T1), trondhjemites (T2), granodiorites (G1), and granites (G2). These granitoids are presented as subalkaline series in a plot of total alkali versus SiO2 (TAS diagram), medium-K calc-alkaline and high-K calc-alkaline series on SiO2 versus K2O diagram, with metaluminous to peraluminous characteristics on an A/CNK versus A/NK diagram. These are shown as a MA (magnesium andesite) series and LMA (lower (or non) magnesium andesite) series on a SiO2 versus MgO diagram, which can be further divided into the higher-pressure TTG subtype of the MA (corresponding to high-SiO2 adakite (HSA)) series and the lower-pressure TTG subtype of LMA (corresponding to typical calc-alkaline suprasubduction zone rocks). In addition, granitoids were enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs) and depleted in heavy rare earth elements (HREEs) and high-field-strength elements (HFSEs), corroborating a suprasubduction zone environment. Regional correlations as well as geochemical characteristics indicate that the rocks from the Greater Khingan Mountains formed in a subduction zone environment during the Early Jurassic; primary magma had presumably originated from the melting of young and hot oceanic crust under eclogite to amphibolite facies conditions. According to the spatial variation in rock assemblages (T1T2G1 to G1G2 and G2), we speculate that the northeastern Heihe, Baishilazi, and Xinghua areas as well as the westward Dajinshan area were adjacent to the ocean and formed an outer subduction zone, whereas the southwestward Sankuanggou, Yili, and Chabaqi areas were adjacent to the continent, forming an inner subduction zone. The distribution sites of the inner and outer subduction zones indicate southward and southwestward ocean subduction. Therefore, we propose a direct connection with southward subduction of the Mongolia–Okhotsk Ocean.
Abstract This paper emphasizes that the interactive constraints of geology and isotopic dating is the best approach to construct the geological event sequence, and has compiled 106 data of reasonable isotopic ages for the igneous rocks of the Yanshan belt. We propose a sequence of mgmatic‐tectonic events in the Jurassic‐Cretaceous Yanshan orogen of North China. Five orogenic episodes are divided, (1) pre‐and initial orogenic episode (Early Jurassic); (2) early orogenic episode (Middle Jurassic); (3) peak orogenic episode (Late Jurassic); (4) late orogenic episode (early Early Cretaceous), and (5) post‐orogenic episode. Each episode is a short cycle, all of the orogenic processes construct a longer cycle, and they, in general, followed a counter‐clockwise (ccw) PTt path. Finally, it is suggested that the Yanshanian movement was so intensive that the magmatism and tectonic deformation had involved all the lithosphere thickness and the late‐Achaean‐formed cratonic lithosphere had been significantly reworked.
Abstract Cenozoic basalt in eastern China contains abundant ultramafic xenoliths which are specimens of pyrolites released during basaltic magma eruption. A total of 405 P‐T data of pyroxene in the ultramafic rocks have been collected, which present a more precise pyroxene geotherm. The average geothermal gradient in the upper mantle represented by the pyroxene geotherm is about 3.3°C / km, which is much less than that derived from the conductive thermal model (≡ 14°C / km), implying the great significance of convective heat transfer. The calculation shows that the contributions of convective and conductive heat transfers are 79% and 21%, respectively. The perturbation in the thermal structure of the upper mantle is an important manifestation of the tectonothermal event of Cenozoic continental rifting and intense basaltic volcanism in eastern China. Based on the pyroxene geotherm and its comparison with the current geothermal field derived from the measurements of the surface heat flows, it is suggested that the Moho may be a secondary thermal boundary. The current geothermal field and the thermal structure of the lithosphere in eastern China may mainly reflect the result of the tectonothermal disturbance in the Neogene‐Quaternary, in other words, the lithosphere has just begun to cool.
The Chalukou porphyry Mo deposit, located in the Great Hinggan Range, is the largest Mo deposit in northeast China, although the age and genesis of the associated magmatic intrusions remain debated. Here we report zircon U–Pb ages and trace elements, whole rock geochemistry and Sr–Nd isotope data with a view to understand the relationship between the magmatism and molybdenum mineralization. Zircon U–Pb analysis yield an age of 475 Ma for rhyolite in the older strata, 168 Ma for the pre-mineralization monzogranite, and 154 Ma for the syn-mineralization granite porphyry. The granite porphyry and quartz porphyry are considered as the ore-forming intrusions. These rocks are peraluminous, alkali-calcic, and belong to high-K to shoshonitic series with a strong depletion of Eu. They also display characteristics of I-type granites. The rocks exhibit wide variations of (87Sr/86Sr)i in the range of 0.705426–0.707363, and εNd(t) of −3.7 to 0.93. Zircon REE distribution patterns show characteristics between crust and the mantle, implying magma genesis through crust-mantle interaction. The Fe2O3/FeO values (average 1) for the whole rock and EuN/EuN∗ values (average 0.45), Ce4+/Ce3+ values (average 301) for zircon grains from the granite porphyry are higher than those from other lithologies. These features suggest that the ore-forming intrusions (syn-mineralization porphyry) had higher oxygen fugacity conditions than those of the pre-mineralization and post-mineralization rocks. The Chalukou Mo deposit formed in relation to the southward subduction of the Mongol-Okhotsk Ocean. Our study suggests that the subduction-related setting, crust-mantle interaction, and the large-scale magmatic intrusion were favorable factors to generate the super-large Mo deposits in this area.