Significance Acute myeloid leukemia (AML) consists of a group of hematopoietic malignancies with considerable diversities in clinical and biological features. Recently, not only genetic abnormalities but also “oncometabolites,” such as 2-hydroxyglutarate (2-HG), have been found to play a role in driving AML pathogenesis and serve as potential disease markers. In this study on a large cohort of AML, we found that the serum 2-HG level was increased in 62 of 367 (17%) cases with distinct hematologic and biological features. Survival analysis performed in 234 patients without prognostic cytogenetic markers showed that increased 2-HG level was a poor predictor, demonstrating the potential of serum 2-HG as an independent marker for outcome evaluation of AML.
The onset and progression of chronic liver disease (CLD) is a multistage process spanning years or several decades. Some bile acid (BA) features are identified as indicators for CLD progression. However, BAs are highly influenced by various factors and are stage and/or population specific. Emerging evidences demonstrated the association of structure of conjugated BAs and CLD progression. Here, we aimed to investigate the alteration of conjugated BAs and identify new features for CLD progression.Based on liquid chromatography-mass spectrometry platform, 15 BAs were quantified in 1883 participants including healthy controls and CLD patients (non-alcoholic fatty liver [NAFL], non-alcoholic steatohepatitis [NASH], fibrosis, cirrhosis, and three types of liver cancer). Logistic regression was used to construct diagnostic models. Model performances were evaluated in discovery and test sets by area under the receiver operating characteristic curve, sensitivity, specificity, accuracy, and kappa index.Five BA glycine : taurine ratios were calculated, and glycocholic acid/taurocholic acid, glycodeoxycholic acid/taurodeoxycholic acid, and glycochenodeoxycholic acid/taurochenocholic acid were identified as candidates. Three diagnostic models were constructed for the differentiation of healthy control and early CLD (NAFL + NASH), early and advanced CLD (fibrosis + cirrhosis + liver cancer), and NAFL and NASH, respectively. The areas under the receiver operating characteristic curve of the models ranged from 0.91 to 0.97. The addition of age and gender improved model performances further. The alterations of the candidates and the performances of the diagnostic models were successfully validated by independent test sets (n = 291).Our findings revealed stage-specific BA perturbation patterns and provided new biomarkers and tools for the monitoring of liver disease progression.
Retinal metabolic changes have been suggested to be associated with myopia development. However, little is known about either their identity or time dependent behavior during this sight compromising process. To address these questions, gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) was applied to compare guinea pig retinal metabolite levels in form deprivation (FD) eyes at 3 days and 2 weeks post FD with normal control (NC) eyes. Orthogonal partial least squares (OPLS) models discriminated between time dependent retinal metabolic profiles in the presence and absence of FD. Myopia severity was associated with more metabolic pattern differences in the FD than in the NC eyes. After 3 days of FD, 11 metabolite levels changed and after 2 weeks the number of differences increased to 16. Five metabolites continuously decreased during two weeks of FD. Two-way ANOVA of the changes identified by OPLS indicates that 15 out of the 22 metabolites differences were significant. Taken together, these results suggest that myopia progression is associated with an inverse relationship between increases in glucose accumulation and lipid level decreases in form-deprived guinea pig eyes. Such changes indicate that metabolomic studies are an informative approach to identify time dependent retinal metabolic alterations associated with this disease.
Pu-erh tea displays cholesterol-lowering properties, but the underlying mechanism has not been elucidated. Theabrownin is one of the most active and abundant pigments in Pu-erh tea. Here, we show that theabrownin alters the gut microbiota in mice and humans, predominantly suppressing microbes associated with bile-salt hydrolase (BSH) activity. Theabrownin increases the levels of ileal conjugated bile acids (BAs) which, in turn, inhibit the intestinal FXR-FGF15 signaling pathway, resulting in increased hepatic production and fecal excretion of BAs, reduced hepatic cholesterol, and decreased lipogenesis. The inhibition of intestinal FXR-FGF15 signaling is accompanied by increased gene expression of enzymes in the alternative BA synthetic pathway, production of hepatic chenodeoxycholic acid, activation of hepatic FXR, and hepatic lipolysis. Our results shed light into the mechanisms behind the cholesterol- and lipid-lowering effects of Pu-erh tea, and suggest that decreased intestinal BSH microbes and/or decreased FXR-FGF15 signaling may be potential anti-hypercholesterolemia and anti-hyperlipidemia therapies.
Abstract Little is known about the trace element profile differences between Schizophrenia patients and healthy controls; previous studies about the association of certain elements with Schizophrenia have obtained conflicting results. To identify these differences in the Han Chinese population, inductively coupled plasma-mass spectrometry was used to quantify the levels of 35 elements in the sera of 111 Schizophrenia patients and 110 healthy participants, which consisted of a training (61/61 for cases/controls included) and a test group including remaining participants. An orthogonal projection to latent structures model was constructed from the training group (R 2 Y = 0.465, Q 2 cum = 0.343) had a sensitivity of 76.0% and a specificity of 71.4% in the test group. Single element analysis indicated that the concentrations of cesium, zinc and selenium were significantly reduced in patients with Schizophrenia in both the training and test groups. The meta-analysis including 522 cases and 360 controls supported that Zinc was significantly associated with Schizophrenia (standardized mean difference [SMD], −0.81; 95% confidence intervals [CI], −1.46 to −0.16, P = 0.01) in the random-effect model. Information theory analysis indicated that Zinc could play roles independently in Schizophrenia. These results suggest clear element profile differences between patients with Schizophrenia and healthy controls and reduced Zn level is confirmed in the Schizophrenia patients.
Abstract The incidences of chronic hepatitis B (CHB), Hepatitis B virus (HBV)-associated cirrhosis and HBV-associated carcinoma are high and increasing. This study was designed to evaluate serum lipid metabolite changes that are associated with the progression from CHB to HBV-associated cirrhosis and ultimately to HBV-associated HCC. A targeted metabolomic assay was performed in fasting sera from 136 CHB patients, 104 HBV-associated cirrhosis, and 95 HBV-associated HCC using ultra-performance liquid chromatography triple quadrupole mass spectrometry. A total of 140 metabolites were identified. Clear separations between each two groups were obtained using the partial least squares discriminate analysis of 9 lipid metabolites. Progressively lower levels of long-chain lysophosphatidylcholines (lysoPC a C18:2, lysoPC a C20:3, lysoPC a C20:4) were observed from CHB to cirrhosis to carcinoma; lower levels of lysoPC a C20:4 were found in patients with higher model for end-stage liver disease in the same disease group; and lysoPC a C20:3 levels were lower in Child-Pugh Class C than in Class A and Class B in HBV-associated cirrhosis and HBV-associated HCC groups. The octadecadienyl carnitine level was higher in HBV-associated cirrhosis group than in other two groups. Serum levels of selected long-chain lysoPCs are promising markers for the progression of HBV-associated liver diseases.
Missing values exist widely in mass-spectrometry (MS) based metabolomics data. Various methods have been applied for handling missing values, but the selection can significantly affect following data analyses. Typically, there are three types of missing values, missing not at random (MNAR), missing at random (MAR), and missing completely at random (MCAR). Our study comprehensively compared eight imputation methods (zero, half minimum (HM), mean, median, random forest (RF), singular value decomposition (SVD), k-nearest neighbors (kNN), and quantile regression imputation of left-censored data (QRILC)) for different types of missing values using four metabolomics datasets. Normalized root mean squared error (NRMSE) and NRMSE-based sum of ranks (SOR) were applied to evaluate imputation accuracy. Principal component analysis (PCA)/partial least squares (PLS)-Procrustes analysis were used to evaluate the overall sample distribution. Student's t-test followed by correlation analysis was conducted to evaluate the effects on univariate statistics. Our findings demonstrated that RF performed the best for MCAR/MAR and QRILC was the favored one for left-censored MNAR. Finally, we proposed a comprehensive strategy and developed a public-accessible web-tool for the application of missing value imputation in metabolomics ( https://metabolomics.cc.hawaii.edu/software/MetImp/ ).
Abstract Calorie restriction (CR) and fasting are common approaches to weight reduction, but the maintenance is difficult after resuming food consumption. Meanwhile, the gut microbiome associated with energy harvest alters dramatically in response to nutrient deprivation. Here, we reported that CR and high-fat diet (HFD) both remodeled the gut microbiota with similar microbial composition, Parabacteroides distasonis was most significantly decreased after CR or HFD. CR altered microbiota and reprogramed metabolism, resulting in a distinct serum bile acid profile characterized by depleting the proportion of non-12α-hydroxylated bile acids, ursodeoxycholic acid and lithocholic acid. Downregulation of UCP1 expression in brown adipose tissue and decreased serum GLP-1 were observed in the weight-rebound mice. Moreover, treatment with Parabacteroides distasonis or non-12α-hydroxylated bile acids ameliorated weight regain via increased thermogenesis. Our results highlighted the gut microbiota-bile acid crosstalk in rebound weight gain and Parabacteroides distasonis as a potential probiotic to prevent rapid post-CR weight gain.
Recently, 5 amino acids were identified and verified as important metabolites highly associated with type 2 diabetes (T2D) development. This report aims to assess the association of tryptophan with the development of T2D and to evaluate its performance with existing amino acid markers. A total of 213 participants selected from a ten-year longitudinal Shanghai Diabetes Study (SHDS) were examined in two ways: 1) 51 subjects who developed diabetes and 162 individuals who remained metabolically healthy in 10 years; 2) the same 51 future diabetes and 23 strictly matched ones selected from the 162 healthy individuals. Baseline fasting serum tryptophan concentrations were quantitatively measured using ultra-performance liquid chromatography triple quadruple mass spectrometry. First, serum tryptophan level was found significantly higher in future T2D and was positively and independently associated with diabetes onset risk. Patients with higher tryptophan level tended to present higher degree of insulin resistance and secretion, triglyceride and blood pressure. Second, the prediction potential of tryptophan is non-inferior to the 5 existing amino acids. The predictive performance of the combined score improved after taking tryptophan into account. Our findings unveiled the potential of tryptophan as a new marker associated with diabetes risk in Chinese populations. The addition of tryptophan provided complementary value to the existing amino acid predictors.