Using the updated models of activity-composition relations for solid solutions,P-T pseudosections and Si isopleths of phengite in the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) are calculated with the software THERMOCALC 323 for three bulk compositions of the average,Al-rich and K-rich metapelites. The Si isopleths of phengite in the calculated pseudosections are highly dependent on mineral as-semblages. In the chlorite-and biotite-bearing di-and trivariant fields,and in the garnet + kyanite-bearing trivariant fields,the phengite can be used as a good geobarometer. But in the carpho-lite-present and chlorite-absent fields,the Si contents of phengite mainly indicate variance of tem-perature. For a given Si value,the phengite in kyanite-bearing assemblages shows higher pressures than in the K-feldspar-bearing assemblages. Addition of Na2O into the KFMASH leads to reduction of stability of the AFM phases. The Si isopleths of phengite in the mineral assemblages containing only one Na-phase are similar to those in the corresponding KFMASH assemblages. But in the assemblages with two or more Na-phases,the phengite Si isopleths differ remarkably from those in the KFMASH.
Abstract Field-based mapping, sandstone petrology, palaeocurrent measurements and zircon cathodoluminescence images, as well as detrital zircon U–Pb geochronology were integrated to investigate the provenance of the Upper Carboniferous – Upper Triassic sedimentary rocks from the northern Bogda Mountains, and further to constrain their tectonic evolution. Variations in sandstone composition suggest that the Upper Carboniferous – Lower Triassic sediments displayed less sedimentary recycling than the Middle–Upper Triassic sediments. U–Pb isotopic dating using the LA-ICP-MS method on zircons from 12 sandstones exhibited similar zircon U–Pb age distribution patterns with major age groups at 360–320 Ma and 320–300 Ma, and with some grains giving ages of > 541 Ma, 541–360 Ma, 300–250 Ma and 250–200 Ma. Coupled with the compiled palaeocurrent data, the predominant sources were the Late Carboniferous volcanic rocks of the North Tianshan and Palaeozoic magmatic rocks of the Yili–Central Tianshan. There was also input from the Bogda Mountains in Middle–Late Triassic time. The comprehensive geological evidence indicates that the Upper Carboniferous – Lower Permian strata were probably deposited in an extensional context which was related to a rift or post-collision rather than arc-related setting. Conspicuously, the large range of U–Pb ages of the detrital zircons, increased sedimentary lithic fragments, fluvial deposits and contemporaneous Triassic zircon ages argue for a Middle–Late Triassic orogenic movement, which was considered to be the initial uplift of the Bogda Mountains.
Objectives The study aimed to determine how foot strike patterns and cutting angles affect lower extremity (LE) kinematics, kinetics, and muscle activity during side-step cutting. Methods Twenty male college sport athletes participated in this research. Three-dimensional motion analysis featuring ground reaction force (GRF) and electromyography (EMG) of the dominant leg was used. LE kinematics, kinetics, and EMG data parameters were obtained during a 45° and 90° side-step cutting involving rearfoot strikes (RFS) and forefoot strikes (FFS). Results The significant foot strike pattern × angle interactions were observed for the ankle eversion range of motion (ROM) at the loading phase. Cutting of 90° had greater knee flexion ROM, knee valgus ROM, and knee varus moment compared to that of 45°. RFS cutting had greater knee flexion, hip flexion, knee valgus, knee varus moment, knee varus moment, and ankle eversion ROM. FFS cutting produced a lower vertical GRF, lateral GRF, and a loading rate. Both vastus medialis and vastus lateralis muscle activities were remarkably greater during cutting of 90° than 45°. At the loading phase, semitendinosus, biceps femoris, and the lateral head of gastrocnemius muscle activities during FFS cutting were considerably greater than those during RFS cutting. Conclusion The FFS pattern can better protect the anterior cruciate ligament (ACL) and improve the flexibility of athletes by increasing the plantarflexion torque of the ankle. The injury risk also increases with the larger cutting angle. The EMG activities of semitendinosus and biceps femoris are vital for the stability of knee joint during side-step cutting, which helps reduce ACL stress during buffering.
Abstract Sediment provenance studies have proven to be an effective method to extract the sediment provenance and tectonic process information recorded by detrital minerals. In this contribution, we conducted detrital monazite and zircon U‐Pb geochronology and detrital Cr‐spinel major element chemistry analyses on samples from the Qaidam Basin to reconstruct the spatial and temporal evolution of the Altyn Tagh Range and the Qimen Tagh Range in the northern Tibetan Plateau. Based on the significant variation in [Th/U] N , [Gd/Lu] N and [Eu/Eu*] N and the U‐Pb ages of the monazite and zircon, the South Altyn Tagh subduction‐collision belt and the North Qimen Tagh Range were, respectively, the main provenances of the Ganchaigou section and the Dongchaishan‐Weitai section in the Qaidam Basin in the Cenozoic. Paleozoic peak metamorphism, retrograde granulite‐facies metamorphism and amphibolite‐facies metamorphism in the South Altyn Tagh subduction‐collision belt were well recorded by the detrital monazite. In comparison, the detrital zircon is a better indicator of igneous events than detrital monazite. Synthesizing the detrital monazite, zircon and Cr‐spinel data, we concluded that the South Altyn Tagh Ocean and Qimen Tagh Ocean existed in the early Paleozoic and that the Altyn Tagh terrane and Qimen Tagh terrane experienced different Paleozoic tectonothermal histories. The collision between the Qaidam terrane and the Azhong terrane occurred at ca. 500 Ma. The Middle Ordovician was the key period of transformation from the collision‐induced compressional environment to an extensional environment in the area of the South Altyn Tagh Range. In the early Paleozoic, the Qimen Tagh area was characterized by the subduction of oceanic crust.
The extensively exposed late Carboniferous volcanic and volcaniclastic successions along the northern margin of the North Tianshan are called the Arbasay Formation. We present field-based mapping, petrography, zircon cathodoluminescence (CL) images, and U–Pb dates, as well as whole-rock geochemical data for these rocks, in order to constrain their formation age and petrogenesis, and understand the geodynamic setting. Conspicuously, the Arbasay Formation shows typical basalt–andesite–dacite–rhyolite volcanic series, and is dominated by andesites with a small amount of basalts and rhyolites based on the geological profile. U–Pb isotopic dating using the LA-ICP-MS method on zircons reveals that the volcanic rocks in the Arbasay Formation formed at 308–305 Ma, that is, late Carboniferous, rather than early Permian as previously proposed. Geochemically, the volcanic rocks mainly belong to the calc-alkaline series and have arc-like geochemical compositions. They are enriched in LREEs ((La/Yb)N = 2.9–7.5) and LILEs (K, Rb, Ba) and depleted in HFSEs (Nb, Ta, Ti). In the tectonic discrimination diagrams, the basalts mainly fall into the area of continental arc. Given our U–Pb dating results, geochemical characteristics, and the regional geological framework, we propose that the late Carboniferous volcanic rocks originated from the arc-related setting, not the intracontinental rift-related setting. They are possibly the major constituents of a continental arc that is formed with the southward subduction of the North Tianshan Oceanic lithosphere.