Abstract Direct implementation of metal-organic frameworks as the catalyst for CO 2 electroreduction has been challenging due to issues such as poor conductivity, stability, and limited > 2e − products. In this study, Au nanoneedles are impregnated into a cupric porphyrin-based metal-organic framework by exploiting ligand carboxylates as the Au 3+ -reducing agent, simultaneously cleaving the ligand-node linkage. Surprisingly, despite the lack of a coherent structure, the Au-inserted framework affords a superb ethylene selectivity up to 52.5% in Faradaic efficiency, ranking among the best for metal-organic frameworks reported in the literature. Through operando X-ray, infrared spectroscopies and density functional theory calculations, the enhanced ethylene selectivity is attributed to Au-activated nitrogen motifs in coordination with the Cu centers for C-C coupling at the metalloporphyrin sites. Furthermore, the Au-inserted catalyst demonstrates both improved structural and catalytic stability, ascribed to the altered charge conduction path that bypasses the incoherent framework. This study underlines the modulation of reticular metalloporphyrin structure by metal impregnation for steering the CO 2 reduction reaction pathway.
Embolization (utilizing embolic materials to block blood vessels) has been considered one of the most promising strategies for clinical disease treatments. However, the existing embolic materials have poor embolization effectiveness, posing a great challenge to highly efficient embolization. In this study, we construct Janus particle-engineered structural lipiodol droplets by programming the self-assembly of Janus particles at the lipiodol-water interface. As a result, we achieve highly efficient renal embolization in rabbits. The obtained structural lipiodol droplets exhibit excellent mechanical stability and viscoelasticity, enabling them to closely pack together to efficiently embolize the feeding artery. They also feature good viscoelastic deformation capacities and can travel distally to embolize finer vasculatures down to 40 μm. After 14 days post-embolization, the Janus particle-engineered structural lipiodol droplets achieve efficient embolization without evidence of recanalization or non-target embolization, exhibiting embolization effectiveness superior to the clinical lipiodol-based emulsion. Our strategy provides an alternative approach to large-scale fabricate embolic materials for highly efficient embolization and exhibits good potential for clinical applications.
The prominent electronic effect between Ni and Ir in Ir-alloy-skinned Ni nanoparticles leads to excellent bifunctional HOR and HER activities in alkaline solution.
Abstract The oxygen evolution reaction (OER) is a bottleneck process for water splitting and finding highly efficient, durable, low‐cost, and earth‐abundant electrocatalysts is still a major challenge. Here a sulfur‐treated Fe‐based metal–organic‐framework is reported as a promising electrocatalyst for the OER, which shows a low overpotential of 218 mV at the current density of 10 mA cm −2 and exhibits a very low Tafel slope of 36.2 mV dec −1 at room temperature. It can work on high current densities of 500 and 1000 mA cm −2 at low overpotentials of 298 and 330 mV, respectively, by keeping 97% of its initial activity after 100 h. Notably, it can achieve 1000 mA cm −2 at 296 mV with a good stability at 50 °C, fully fitting the requirements for large‐scale industrial water electrolysis. The high catalytic performance can be attributed to the thermocatalytic processes of H + capture by –SO 3 groups from *OH or *OOH species, which cascades to the electrocatalytic pathway and then significantly reduces the OER overpotentials.