Abstract Exopalaemon carinicauda , a eurythermal and euryhaline shrimp, contributes one third of the total biomass production of polyculture ponds in eastern China and is considered as a potential ideal experimental animal for research on crustaceans. We conducted a high-quality chromosome-level genome assembly of E. carinicauda combining PacBio HiFi and Hi-C sequencing data. The total assembly size was 5.86 Gb, with a contig N50 of 235.52 kb and a scaffold N50 of 138.24 Mb. Approximately 95.29% of the assembled sequences were anchored onto 45 pseudochromosomes. BUSCO analysis revealed that 92.89% of 1,013 single-copy genes were highly conserved orthologs. A total of 44, 288 protein-coding genes were predicted, of which 70.53% were functionally annotated. Given its high heterozygosity (2.62%) and large proportion of repeat sequences (71.49%), it is one of the most complex genome assemblies. This chromosome-scale genome will be a valuable resource for future molecular breeding and functional genomics research on E. carinicauda .
Abstract The gut microbial communities interact with the host immunity and physiological functions. In this study, we investigated the bacterial composition in Litopenaeus vannamei shrimp’s gut and rearing water under different host (developmental stage: juvenile and adult; health status: healthy and diseased) and environmental factors (temperature 25 °C and 28 °C; and light intensity: low and high). The PCoA analysis showed that all water samples were clustered together in a quarter, whereas the gut samples spread among three quarters. In terms of functional bacteria, gut samples of adult shrimp, healthy adult shrimp, adult shrimp raised at 28 °C, and juvenile shrimp under high light intensity exhibited a higher abundance of Vibrionaceae compared to each other opposite group. Gut samples of juvenile shrimp, infected adult shrimp, juvenile shrimp with low light intensity, and adult shrimp with a water temperature of 25 °C showed a higher abundance of Pseudoaltromonadaceae bacteria compared to each other opposite group. Gut samples of juvenile shrimp, healthy adult shrimp, adult shrimp raised at a water temperature of 28 °C, and juvenile shrimp with high light intensity showed the higher abundance of Firmicutes / Bacteroidota ratio compared to each other opposite group. Our results showed that L. vannamei juveniles are more sensitive to bacterial infections; besides, water temperature of 28 °C and high light intensity groups were both important conditions improving the shrimp gut bacterial composition under industrial indoor farming systems. Key points • Bacteria diversity was higher among shrimp intestinal microbiota compared to the rearing water . • Shrimp juveniles are more sensitive to bacterial infection compared to adults . • Water temperature of 28 °C and high light intensity are recommended conditions for white shrimp aquaculture . Graphical Abstract
High alkalinity stress was considered as a major risk factor for aquatic animals surviving in saline-alkaline water. However, few information exists on the effects of alkalinity stress in crustacean species. As the dominant role of gills in osmotic and ionic regulation, the present study firstly evaluated the effect of alkalinity stress in Exopalaemon carinicauda to determine changes in gill microstructure, and then explore the heterogeneity response of gill cells in alkalinity adaptation by single-cell RNA sequencing (scRNA-seq). Hemolymph osmolality and pH were increased remarkably, and gills showed pillar cells with more symmetrical arrangement and longer lateral flanges and nephrocytes with larger vacuoles in high alkalinity. ScRNA-seq results showed that alkalinity stress reduced the proportion of pillar cells and increased the proportion of nephrocytes significantly. The differentially expressed genes (DEGs) related to ion transport, especially acid-base regulation, such as V(H+)-ATPases and carbonic anhydrases, were down-regulated in pillar cells and up-regulated in nephrocytes. Furthermore, pseudotime analysis showed that some nephrocytes transformed to perform ion transport function in alkalinity adaption. Notedly, the positive signals of carbonic anhydrase were obviously observed in the nephrocytes after alkalinity stress. These results indicated that the alkalinity stress inhibited the ion transport function of pillar cells, but induced the active role of nephrocytes in alkalinity adaptation. Collectively, our results provided the new insight into the cellular and molecular mechanism behind the adverse effects of saline-alkaline water and the saline-alkaline adaption mechanism in crustaceans.
Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT) and cold treatment (CT) cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024) annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts) than Muscat of Hamburg (2307 transcripts) when exposed to cold stress. Common DEGs (408 transcripts) suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change) also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique candidate transcripts may contribute to the excellent cold-hardiness of V. amurensis.