Abstract Solution-processable 2D semiconductor inks based on electrochemical molecular intercalation and exfoliation of bulk layered crystals using organic cations has offered an alternative pathway to low-cost fabrication of large-area flexible and wearable electronic devices. However, the growth of large-piece bulk crystals as starting material relies on costly and prolonged high-temperature process, representing a critical roadblock towards practical and large-scale applications. Here we report a general liquid-metal-assisted approach that enables the electrochemical molecular intercalation of low-cost and readily available crystal powders. The resulted solution-processable MoS 2 nanosheets are of comparable quality to those exfoliated from bulk crystals. Furthermore, this method can create a rich library of functional 2D electronic inks ( >50 types), including 2D wide-bandgap semiconductors of low electrical conductivity. Lastly, we demonstrated the all-solution-processable integration of 2D semiconductors with 2D conductors and 2D dielectrics for the fabrication of large-area thin-film transistors and memristors at a greatly reduced cost.
Abstract Accurate and comprehensive immunochromatographic assay (ICA) data are urgently required in the daily supervision of plants, schools, testing institutions, and law-enforcing departments. Through pretreatment-integration and device-facilitated operation, a quantitative ICA with high sensitivity and throughput was realized on the basis of a commercialized semi-quantitative ICA strip. Three pretreatment methods, namely, acid base, heavy metal salt, and organic solvent methods, have less than three steps. The pretreatment was established for protein removal. A total of 17 pretreated ICA items in milk were considered for the identification of the most suitable pretreatment method. The items are composed of six items pretreated by the acid-base method, six by the heavy salt method, and five by the organic solvent method. Then, the ICA results with pretreatment were compared with those without pretreatment. After pretreatment, the signal intensity increased by 39%, the detection limit decreased to 12%, the half maximal inhibitory concentration decreased to 18%, and the detection range increased fourfold. A device with mixing and centrifugation functions was designed for the pretreatment-related operations. A pre-incubation sampling device was used to facilitate incubation in batch and high-throughput detection. An ICA reader was used. The detection throughput reached 8 samples per batch or 32 samples per hour. The designed devices were printed through 3D printing and rapid prototyping.
Data mining is currently a frontier research topic in the field of information and database technology. It is recognized as one of the most promising key technologies. Data mining involves multiple technologies, such as mathematical statistics, fuzzy theory, neural networks, and artificial intelligence, with relatively high technical content. The realization is also difficult. In this article, we have studied the basic concepts, processes, and algorithms of association rule mining technology. Aiming at large‐scale database applications, in order to improve the efficiency of data mining, we proposed an incremental association rule mining algorithm based on clustering, that is, using fast clustering. First, the feasibility of realizing performance appraisal data mining is studied; then, the business process needed to realize the information system is analyzed, the business process‐related links and the corresponding data input interface are designed, and then the data process to realize the data processing is designed, including data foundation and database model. Aiming at the high efficiency of large‐scale database mining, database development tools are used to implement the specific system settings and program design of this algorithm. Incorporated into the human resource management system of colleges and universities, they carried out successful association broadcasting, realized visualization, and finally discovered valuable information.