The unexplored South Purulia Shear Zone (SPSZ) at the north of Singhbhum Shear Zone (SSZ) in Eastern India is a prospective zone for structural-guided hydrothermal mineralization. We carried out an integrated geophysical study using self-potential (SP), gradient-resistivity profiling (GRP), and gravity study across the SPSZ to identify the near-surface structural features and probable correlation with the uranium mineralization of the region. We studied a broad low SP, anomaly zone correlated with corresponding low-gravity and low-resistive zone across the same part of the study area. This conductive and low-density zone was identified as the width of the brittle-to-ductile and highly altered SPSZ. The 2D modeling of SP and residual gravity data along a northeast–southwest profile across the shear zone between Raghunathpur and Barabazar localities revealed the northerly dipping shear zone with an average width of [Formula: see text]. However, the 2D modeling of the SP data suggested numerous thick, sheet-type vertical and/or inclined structures intervening the shear zone, which were well correlated with the vertical structures delineated by the 2D gravity inverse model. The vertical alteration zones (density and conductivity) at [Formula: see text]-, 200-, and 400-m depths have been identified over this region. These alteration zones are likely to be mineralized zone because a hydrouranium anomaly has also been reported from those locations earlier. We studied the efficacy of an integrated approach using GRP, SP, and gravity surveys for the investigation of near-surface vertical to dipping conducting structures associated with uranium mineralization in such shear zone regions.
1 Lack of proper insulation at the bottom of the ash disposal ponds enhances the chances of groundwater contamination. In this study, direct current (dc) resistivity survey, employing Schlumberger configuration, was undertaken to identify the local subsurface and to estimate the depth of contamination around ash ponds near a thermal power plant in Eastern India. A continuous conductive zone with resistivity < 5 Ωm was identified throughout the studied region at a depth of about 2-10 m indicating the presence of water with higher ionic concentration. This can be due to the leached soluble species that percolate downwards with the slurry water in the form of leachate. The continuity of this zone from inland towards the river can pose a threat to the groundwater as well as the overall health of the river ecosystem. Geophysical method utilized in this study is fast, efficient and cost-effective in delineating the extent of the probable contamination zone(s).
A very fast simulated-annealing (VFSA) global optimization procedure is developed for the interpretation of self-potential (SP) anomaly measured over a 2D inclined sheet-type structure. Model parameters such as electric current dipole density ([Formula: see text]), horizontal and vertical locations of the center of the causative body ([Formula: see text] and [Formula: see text]), half-width ([Formula: see text]), and polarization/inclination angle ([Formula: see text]) of the sheet are optimized. VFSA optimization yields a large number of well-fitting solutions in a vast model space. Even though the assumed model space (minimum and maximum limits for each model parameter) is appropriate, it has been observed that models obtained by the VFSA process in the predefined model space could also be geologically erroneous. This offers new insight into the interpretation of self-potential data. Our optimization results indicate that there exist at least two sets of solutions that can fit the observed data equally well. The first set of solutions represents a local optimum and is geologically inappropriate. The second set of solutions represents the actual subsurface structure. The mean model estimated from the latter models represents the global solution. The efficacy of the developed approach has been demonstrated using various synthetic examples. Field data from the Surda area of Rakha Mines, India and the Bavarian woods, Germany are also interpreted. The computation time for finding this versatile solution is very short (52 s on a simple PC) and the proposed approach is found to be more advantageous than other approaches.
ABSTRACT The Beldih open cast mine of the South Purulia Shear Zone in Eastern India is well known for apatite deposits associated with Nb–rare‐earth‐element–uranium mineralization within steeply dipping, altered ferruginous kaolinite and quartz–magnetite–apatite rocks with E–W strikes at the contact of altered mafic–ultramafic and granite/quartzite rocks. A detailed geophysical study using gravity, magnetic, and gradient resistivity profiling surveys has been carried out over ∼1 km 2 area surrounding the Beldih mine to investigate further the dip, depth, lateral extension, and associated geophysical signatures of the uranium mineralization in the environs of South Purulia Shear Zone. The high‐to‐low transition zone on the northern part and high‐to‐low anomaly patches on the southeastern and southwestern parts of the Bouguer, reduced‐to‐pole magnetic, and trend‐surface‐separated residual gravity–magnetic anomaly maps indicate the possibility of highly altered zone(s) on the northern, southeastern, and southwestern parts of the Beldih mine. The gradient resistivity survey on either side of the mine has also revealed the correlation of low‐resistivity anomalies with low‐gravity and moderately high magnetic anomalies. In particular, the anomalies and modeled subsurface features along profile P6 perfectly match with subsurface geology and uranium mineralization at depth. Two‐dimensional and three‐dimensional residual gravity models along P6 depict the presence of highly altered vertical sheet of low‐density material up to a depth of ∼200 m. The drilling results along the same profile confirm the continuation of uranium mineralization zone for the low‐density material. This not only validates the findings of the gravity model but also establishes the geophysical signatures for uranium mineralization as low‐gravity, moderate‐to‐high magnetic, and low‐resistivity values in this region. This study enhances the scope of further integrated geophysical investigations along the South Purulia Shear Zone to delineate suitable target areas for uranium exploration.