Abstract Background Gastric cancer (GC) constitutes a major global health problem, of which remnant gastric cancer (RGC) occurs less frequently. The rate of RGCs after gastrectomy for GC is increasing recently due to improved survival and screening, however, their incidence and risk have not been reported in the U.S. population. The objective of this study was to evaluate the incidence and elevated risk of RGC after GC gastrectomy in this population, and to identify the risk factors. Methods Patients underwent gastrectomy for first primary GC in 2000–2015 and those who developed RGC were identified from Surveillance, Epidemiology and End Results (SEER) database. Fine-Gray regression was used to estimate the cumulative incidence and to identify risk factors. Standardized incidence ratios (SIRs) were calculated by Poisson regression to compare the risk with the general population. Results Among 21,566 patients included in the cohort, 227 developed RGC. The 20-year cumulative incidence of RGC was 1.88%. Multivariate analysis revealed that older age, invasion depth, male sex, marital status, and lower income are independent risk factors for RGC development. SIR was 7.70 overall and > 4.5 in each stratum. Conclusions Cumulative incidence and risk for RGCs increased continuously in patients underwent GC gastrectomy. Close and lifelong endoscopy surveillance should be recommended for patients who received GC gastrectomy, especially those with high-risk factors.
Abstract Developing fabric-based electronics with good wearability is undoubtedly an urgent demand for wearable technologies. Although the state-of-the-art fabric-based wearable devices have shown unique advantages in the field of e-textiles, further efforts should be made before achieving “electronic clothing” due to the hard challenge of optimally unifying both promising electrical performance and comfortability in single device. Here, we report an all-fiber tribo-ferroelectric synergistic e-textile with outstanding thermal-moisture comfortability. Owing to a tribo-ferroelectric synergistic effect introduced by ferroelectric polymer nanofibers, the maximum peak power density of the e-textile reaches 5.2 W m −2 under low frequency motion, which is 7 times that of the state-of-the-art breathable triboelectric textiles. Electronic nanofiber materials form hierarchical networks in the e-textile hence lead to moisture wicking, which contributes to outstanding thermal-moisture comfortability of the e-textile. The all-fiber electronics is reliable in complicated real-life situation. Therefore, it is an idea prototypical example for electronic clothing.
Intelligent textiles provide an ideal platform for merging technology into daily routines. However, current textile electronic systems often rely on rigid silicon components, which limits seamless integration, energy efficiency, and comfort. Chipless electronic systems still face digital logic challenges owing to the lack of dynamic energy-switching carriers. We propose a chipless body-coupled energy interaction mechanism for ambient electromagnetic energy harvesting and wireless signal transmission through a single fiber. The fiber itself enables wireless visual-digital interactions without the need for extra chips or batteries on textiles. Because all of the electronic assemblies are merged in a miniature fiber, this facilitates scalable fabrication and compatibility with modern weaving techniques, thereby enabling versatile and intelligent clothing. We propose a strategy that may address the problems of silicon-based textile systems.