Summary Coalbed-methane (CBM) reservoirs are naturally fractured formations, comprising both permeable fractures and matrix blocks. The interaction between fractures and matrix presents a great challenge for the forecast of CBM reservoir performance. In this work, a dual-permeability model was applied to study the parameter sensitivity on the CBM production, because the dual-permeability model incorporates not only the influence from matrix and fractures but also that between adjacent matrix blocks. The mass exchange between two systems is defined as a function of desorption time constant at the standard condition, coal matrix porosity, and the difference of gas pressure between two systems. Correspondingly, gas diffusivity in matrix is considered as a variable and represented by a function of shape factor, gas desorption time, and reservoir pressure. These relations are integrated into a fully coupled numerical model of coal geomechanical deformation and gas desorption/gas flow in both systems. This numerical approach demonstrates the important nonlinear effects of the complex interaction between matrix and fractures on CBM production behaviors that cannot be recovered without rigorously incorporating geomechanical influences. This model was then used to investigate the sensitivity of CBM extraction behavior to different controlling factors, including gas desorption time constant, initial fracture permeability, fracture spacing, swelling capacity, desorption capacity, production pressure, and fracture and matrix porosities. Modeling results show that the peak magnitudes of gas-production rate increase with initial fracture permeability, sorption and swelling capacities, and matrix porosity, and decrease with gas desorption time constant and production pressure. These results also show dramatic increase in gas-production efficiency with decreasing magnitudes of fracture spacing. The comparison of the transient contributions of the desorbed gas and the free phase gas from the matrix system to gas production shows that the free phase gas plays the dominant role at the early stage, but diminishes when the adsorption phase gas takes over the dominant role, indicating the necessity of incorporating free phase gas impact in simulation models. The numerical model was also applied to match the history data from a gas-production well. A better matching result than that for the single-permeability model demonstrates the potential capability of the dual-permeability model for the forecast of CBM production.
Abstract The edge-to-edge matching (E2EM) model and electron back-scatter diffraction (EBSD) technique are used to explore the grain refinement mechanism of commercially pure Al through the addition of Ti and Zr elements. EBSD results show that there are favorable crystallography orientation relationships (ORs) between both Al 3 Ti and Al 3 Zr particles with α-Al matrix. Due to these ORs Al 3 Ti and Al 3 Zr particles act as the heterogeneous nucleation site during solidification nucleation of Al–Ti and Al–Zr alloys, respectively. Furthermore, both Al 3 Ti and Al 3 Zr particles have small values of interplanar spacing mismatch and interatomic spacing misfit with respect to α-Al matrix by using E2EM. It shows that micro-addition of Ti and Zr element is efficient heterogeneous nucleation refiner in commercial purity Al or Al alloys. Besides, there may be some other mechanisms in grain refinement of Al alloys with addition of Ti grain refiner.
Gas transport through porous coal contains gas laminar flow in the cleat network and gas adsorption/diffusion in the matrix block. Since permeable capacity of the cleat is greater than that of the matrix, change of the matrix pressure readily lags behind change in the cleat pressure. Such unsynchronized pressure changes can result in a complex compatible deformation of a cleat-matrix system, significantly affecting the coal permeability. In this paper, we investigated the cleat-matrix interaction on coal permeability by using a modified pressure pulse decay method integrated with numerical analysis. The experimental results indicate that the bulk volume of the coal sample rapidly expanded at the beginning of gas injection, and then the volume expansion rate of the coal sample slowed down as the downstream pressure of the coal sample gradually equilibrated with the upstream pressure. During this process, the coal permeability was observed to gradually decrease with time. Numerical analysis results indicate that gas transport from the cleat to the matrix can attenuate the differential pressure between the cleat and the matrix. A smaller ratio of initial matrix permeability to initial cleat permeability can prolong decay duration of the differential pressure inside the cleat-matrix system. Although the coal sample is subjected to a stress-controlled condition, the coal permeability response to gas diffusion is closer to the case using a constant volume boundary. The dynamic change of coal permeability is significantly affected by the cleat-matrix interaction, in cases where the short-term change is mainly attributable to the cleat network and the long-term change is controlled by matrix swelling/shrinkage.