The escalating intensity and frequency of drought-flood abrupt alternation (DFAA) events, intensified by climate change, pose a significant threat to both the eco-environment and human life. Despite their evident impacts, the risk associated with DFAA events has received limited attention. In this study, we present a comprehensive risk assessment model incorporating multifold natural and anthropogenic indicators to analyze the spatiotemporal variations of DFAA risk. Utilizing a DFAA index (DFAAI) based on river flow data from seven monitoring stations spanning 1999 to 2019, we investigate DFAA events in the Dianchi Basin, the largest lake in the Yunnan-Guizhou Plateau, China. Our analysis reveals that 56% of total DFAA events occurred between June and August, with drought-to-flood (DTF) events accounting for 62.5% of DFAA occurrences in the Dianchi Basin. Notably, the intensity and frequency of DFAA events exhibit significant spatial variations across the basin. The hazard, vulnerability, exposure, and disaster defense indices further exhibit substantial spatial discrepancies, with hazard indicators being the most influential, notably the DFAA rate accounting for 72.4% of the overall impact. Spatial correlations in DFAA risk among monitoring stations were found to be low, primarily influenced by variations in meteorological conditions, underlying surface characteristics, and human activities. The findings of this study can offer valuable insights for effective water resource management in an ever-changing environment.
As the largest artesian irrigation area in northern China, the Hetao Plain is also one of the major grain-producing areas in China. Meanwhile, there is a large amount of highly mineralized groundwater resulting in the soil salinization and desertification in this region. In addition, this study also uses the traditional hydro-geochemical methods to investigate the spatial evolution characteristics and formation mechanisms of highly mineralized groundwater. The results indicate that there is a large amount of highly mineralized groundwater (salinity > 3 g/L) in the shallow aquifer over the Hetao Plain. As far as the spatial patterns are concerned, there are significant spatial differences. In accordance with the structural, paleogeographic, landform, and hydrogeological conditions, the highly mineralized groundwater in the Hetao Plain can be divided into five zones, namely, the front fan depression, the north bank of the Yellow River, Xishanzui, Hasuhai in the Hubao Plain, and Dalad banner on the south bank of the Yellow River. Among them, the highly mineralized groundwater of Xishanzui exhibits the largest value of the salinity > 10 g/L. The main cations are Mg2+ and Na+, while the main anions are Cl− and SO42−. Moreover, the groundwater in the highly mineralized area contains a large amount of I−. According to the analysis of Piper, Gibbs diagrams of groundwater, the proportion coefficients of various components and the indication of isotope, it can be seen that most of the chemical ions in groundwater in the highly mineralized zone come from evaporation-concentration, which are mainly affected by climate, sedimentary environment, hydrogeological conditions and hydrology. The source of high mineralization in Xishanzui are different from other high mineralization regions, and the highly mineralized groundwater in Xishanzui is formed by the infestation of deep underground salt brine. These results can provide scientific basis for the rational allocation of regional water resources and the promotion of water resources development and utilization.