Abstract The protracted nature of the 2016-2017 central Italy seismic sequence, with multiple damaging earthquakes spaced over months, presented serious challenges for the duty seismologists and emergency managers as they assimilated the growing sequence to advise the local population. Uncertainty concerning where and when it was safe to occupy vulnerable structures highlighted the need for timely delivery of scientifically based understanding of the evolving hazard and risk. Seismic hazard assessment during complex sequences depends critically on up-to-date earthquake catalogues—i.e., data on locations, magnitudes, and activity of earthquakes—to characterize the ongoing seismicity and fuel earthquake forecasting models. Here we document six earthquake catalogues of this sequence that were developed using a variety of methods. The catalogues possess different levels of resolution and completeness resulting from progressive enhancements in the data availability, detection sensitivity, and hypocentral location accuracy. The catalogues range from real-time to advanced machine-learning procedures and highlight both the promises as well as the challenges of implementing advanced workflows in an operational environment.
Abstract. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is an Italian research institution, with focus on Earth Sciences. INGV runs the Italian National Seismic Network (Rete Sismica Nazionale, RSN) and other networks at national scale for monitoring earthquakes and tsunami as a part of the National Civil Protection System coordinated by the Italian Department of Civil Protection (Dipartimento di Protezione Civile, DPC). RSN is composed of about 400 stations, mainly broadband, installed in the Country and in the surrounding regions; about 110 stations feature also co-located strong motion instruments, and about 180 have GPS receivers and belong to the National GPS network (Rete Integrata Nazionale GPS, RING). The data acquisition system was designed to accomplish, in near-real-time, automatic earthquake detection, hypocenter and magnitude determination, moment tensors, shake maps and other products of interest for DPC. Database archiving of all parametric results are closely linked to the existing procedures of the INGV seismic monitoring environment and surveillance procedures. INGV is one of the primary nodes of ORFEUS (Observatories & Research Facilities for European Seismology) EIDA (European Integrated Data Archive) for the archiving and distribution of continuous, quality checked seismic data. The strong motion network data are archived and distributed both in EIDA and in event based archives; GPS data, from the RING network are also archived, analyzed and distributed at INGV. Overall, the Italian earthquake surveillance service provides, in quasi real-time, hypocenter parameters to the DPC. These are then revised routinely by the analysts of the Italian Seismic Bulletin (Bollettino Sismico Italiano, BSI). The results are published on the web, these are available to both the scientific community and the general public. The INGV surveillance includes a pre-operational tsunami alert service since INGV is one of the Tsunami Service providers of the North-eastern Atlantic and Mediterranean Tsunami warning System (NEAMTWS).
Geophysical site investigations have been performed in association with deployment of a dense array of 95 3-component seismometers on the Cavola landslide in the Northern Apennines. The aim of the array is to study propagation of seismic waves in the heterogeneous medium through comparison of observation and modelling. The small-aperture array (130 m×56 m) operated continuously for three months in 2004. Cavola landslide consists of a clay body sliding over mudstone-shale basement, and has a record of historical activity, including destruction of a small village in 1960. The site investigations include down-hole logging of P- and S-wave travel times at a new borehole drilled within the array, two seismic refraction lines with both P-wave profiling and surface-wave analyses, geo-electrical profiles and seismic noise measurements. From the different approaches a consistent picture of the depths and seismic velocities for the landslide has emerged. Their estimates agree with resonance frequencies of seismic noise, and also with the logged depths to basement of 25 m at a new borehole and of 44 m at a pre-existing borehole. Velocities for S waves increase with depth, from 230 m/s at the surface to 625 m/s in basement immediately below the landslide.
Abstract The detection level of a seismic network is a measure of its effective ability to record small earthquakes in a given area. It can vary in both space and time and depends on several factors such as meteorological conditions, anthropic noise, local soil conditions—all factors that affect the seismic noise level—as well as the quality and operating condition of the instruments. The ability to estimate the level of detection is of tremendous importance both in the design of a new network and in determining whether a given network can recognize seismicity consistently or needs to be improved in some of its parts. In this article, we determine the detection level of the Cuban seismic network using the empirically estimated seismic noise spectral level at each station site and some theoretical relationships to predict the signal amplitude of a seismic event at individual stations. The minimum local detectable magnitude thus depends on some network parameters such as the signal-to-noise ratio and the number of stations used in the calculation. We also demonstrate the effectiveness of our predictions by comparing the estimated detection level with those empirically determined from one year of data (i.e., the year 2020) of the Cuban seismic catalog. Our analysis shows, on the one hand, in which areas the current Cuban network should be improved, also depending on the regional pattern of faults, and, on the other hand, indicates the magnitude threshold that can be assumed homogeneously for the catalog of Cuban earthquakes in 2020. Because the adopted method can use current measurements of the seismic noise level (e.g., daily), the proposed analysis can also be configured for continuous monitoring of network state quality.
Abstract The deformation style of the continental lithosphere is a relevant issue for geodynamics and seismic hazard perspectives. Here we show the first evidence of two well-distinct low-angle and SW-dipping individual reverse shear zones of the Italian Outer Thrust System in Central Italy. One corresponds to the down-dip prosecution of the Adriatic Basal Thrust with its major splay and the other to a hidden independent structure, illuminated at a depth between 25 and 60 km, for an along-strike extent of ~ 150 km. Combining geological information with high-quality seismological data, we unveil this novel configuration and reconstruct a detailed 3D geometric and kinematic fault model of the compressional system, active at upper crust to upper mantle depths. In addition, we report evidence of coexisting deformation volumes undergoing well-distinguished stress fields at different lithospheric depths. These results provide fundamental constraints for a forthcoming discussion on the Apennine fold-and-thrust system's geodynamic context as a shallow subduction zone or an intra-continental lithosphere shear zone.
Abstract This work investigates the spatial distribution of three seismic swarms that occurred in Western Liguria (NW Italy) in 1990 and 1993. The largest events, recorded on July and December 1993, exceeded magnitude 4.0. The routine locations of hypocenters were not able to depict the geometry of the active zone, due to the limitations of the regional seismic network. Also the adoption of different location techniques (“forward” probability estimation, relative locations) did not furnish any particular information on the real spatial distribution of these very closely spaced events. The analysis of the recorded signals demonstrated the strong coherency among seismograms and suggested the use of doublet-multiplet techniques in order to evaluate the relative position of events. For every swarm, the relative locations obtained (with estimated errors of the order of a few meters) depict clearly the geometry of the very limited area involved in this seismic activity (of the order of 1 km2): all the analyzed events lie (within a few meters) on a plane that is in agreement with one of the planes of the focal mechanism of the mainshocks obtained by first-motion polarities. A strike-slip rupture, with a compressive component, on planes with strike around 80° and dip ranging from 56° to 74°, is in agreement with all the available information. Moreover, using some similar events belonging to the different periods of activity (bridge events), the relative position of the three groups of earthquakes was also determined, showing that the more energetic activity of 1993 reactivated a shallower area contiguous to the sector mobilized in 1990 and characterized by a slightly different dip.