We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumours and ∼25% of high-grade endometrioid tumours had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor levels, and frequent TP53 mutations. Most endometrioid tumours had few copy number alterations or TP53 mutations, but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS and novel mutations in the SWI/SNF chromatin remodelling complex gene ARID5B. A subset of endometrioid tumours that we identified had a markedly increased transversion mutation frequency and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy-number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may affect post-surgical adjuvant treatment for women with aggressive tumours. An integrative genomic analysis of several hundred endometrial carcinomas shows that a minority of tumour samples carry copy number alterations or TP53 mutations and many contain key cancer-related gene mutations, such as those involved in canonical pathways and chromatin remodelling; a reclassification of endometrial tumours into four distinct types is proposed, which may have an effect on patient treatment regimes. This paper from The Cancer Genome Atlas Research Network presents an in-depth genome-wide analysis of endometrial (uterine) carcinomas from more than 350 patients. Based on a series of genomic features including newly identified hotspot mutations in the DNA polymerase gene POLE, and novel mutations in the ARID5B DNA-binding protein, the authors propose a reclassification of endometrial tumours into four distinct types. This might have clinical relevance for post-surgical adjuvant treatment of women with aggressive tumours.
Stereo vision technology based on line structured light can effectively solve the problem of a three-dimensional (3D) reconstruction of a smooth surface. A method for 3D reconstruction of mobile binocular stereo vision based on push-broom line structured light for a workpiece surface is presented in this paper. The subpixel coordinates of the light strip centers of the line structured light are obtained by the Steger algorithm while the binocular module moves along the guide rail, and the polar constraint is used to achieve the matching of the extracted light strip centers. As a result, the 3D coordinates of the light strip centers in each location can be calculated because of the known interior and external parameters of the binocular module. To obtain the 3D point cloud data of the entire surface, a relative pose optimization method with respect to the initial frame is proposed, which accurately estimates the pose of the cameras in each location with respect to that in the initial location and unifies the 3D coordinates of the light strip centers in each location to the datum coordinates. The relative pose optimization method first estimates the rough values by using the direct linear transform method, and then iteratively calculates the refined solutions based on the principle of minimizing the re-projection errors. Simulation data and substantial experimental results validate the effectiveness of our method. Our method is compared to the direct linear transform method and the frame-by-frame transfer method, and the root mean square error (RMSE) of the distance from 3D point cloud to fitted plane is used to evaluate the 3D reconstruction accuracy. The repeatability experiment shows that the RMSE from our method is as low as 0.83 mm.
We analysed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel protein-expression-defined subgroups, possibly produced by stromal/microenvironmental elements, and integrated analyses identified specific signalling pathways dominant in each molecular subtype including a HER2/phosphorylated HER2/EGFR/phosphorylated EGFR signature within the HER2-enriched expression subtype. Comparison of basal-like breast tumours with high-grade serous ovarian tumours showed many molecular commonalities, indicating a related aetiology and similar therapeutic opportunities. The biological finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biological subtypes of breast cancer. The Cancer Genome Atlas Network describe their multifaceted analyses of primary breast cancers, shedding light on breast cancer heterogeneity; although only three genes (TP53, PIK3CA and GATA3) are mutated at a frequency greater than 10% across all breast cancers, numerous subtype-associated and novel mutations were identified. This Article from the Cancer Genome Atlas consortium describes a multifaceted analysis of primary breast cancers in 825 people. Exome sequencing, copy number variation, DNA methylation, messenger RNA arrays, microRNA sequencing and proteomic analyses were performed and integrated to shed light on breast-cancer heterogeneity. Just three genes — TP53, PIK3CA and GATA3 — are mutated at greater than 10% frequency across all breast cancers. Many subtype-associated and novel mutations were identified, as well as two breast-cancer subgroups with specific signalling-pathway signatures. The analyses also suggest that much of the clinically observable plasticity and heterogeneity occurs within, and not across, the major subtypes of breast cancer.
In this paper, small-molecule quaternary ammonium salts were synthesized by N-alkylation to inhibit hydration swelling and hydration dispersion. The prepared small-molecule quaternary ammonium salt was characterized by Fourier transform infrared (FTIR) spectroscopy, Thermogravimetric analysis (TGA), particle size analysis and Scanning electron microscopy (SEM), and its performance as an inhibitor in clay was evaluated by an anti-swelling test and a linear swelling test. The results show that small-molecule quaternary ammonium salt (TEE-2) synthesized by triethanolamine and epichlorohydrin in ethanol with a molar ratio of 1:1.5 can successfully inhibit the hydration swelling and dispersion of clay. The anti-swelling rate of TEE-2 was 84.94%, the linear swelling rate was 36.42%, and the linear swelling rate of 0.5% TEE-2 was only 29.34%. The hydration swelling of clay in 0.5% TEE-2 solution was significantly inhibited. The hydration inhibition mechanism of the small-molecule quaternary ammonium salt inhibitor 0.5% TEE-2 was analyzed by FTIR, SEM and TGA. It was considered that 0.5% TEE-2 has strong hydration inhibition, which was realized by infiltration and adsorption on the clay surface. Small-molecule quaternary ammonium salts were beneficial for maintaining wellbore stability and reducing the risk of wellbore instability.