Abstract– The 1.8 km‐diameter Xiuyan crater is an impact structure in northeastern China, exposed in a Proterozoic metamorphic rock complex. The major rocks of the crater are composed of granulite, hornblendite, gneiss, tremolite marble, and marble. The bottom at the center of the crater covers about 100 m thick lacustrine sediments underlain by 188 m thick crater‐fill breccia. A layer of polymict breccia composed of clasts of granulite, gneiss, hornblendite, and fragments of glass as well as clastic matrix, occurs near the base, in the depth interval from 260 to 295 m. An investigation in quartz from the polymict breccia in the crater‐fill units reveals abundant planar deformation features (PDFs). Quartz with multiple sets of PDFs is found in clasts of granulite that consist of mainly quartz and feldspar, and in fine‐grained matrix of the impact‐produced polymict breccia. A universal stage was used to measure the orientation of PDFs in 70 grains of quartz from five thin sections made from the clasts of granulite of polymict breccia recovered at the depth of 290 m. Forty‐four percent of the quartz grains contain three sets of PDFs, and another 40% contain two sets of PDFs. The most abundant PDFs are rhombohedron forms of , , and with frequency of 33.5, 22.3, and 9.6%, respectively. A predominant PDF form of in quartz suggests a shock pressure >20 GPa. The occurrence of PDFs in quartz from the polymict breccia provides crucial evidence for shock metamorphism of target rocks and confirms the impact origin of this crater, which thus appears to be the first confirmed impact crater in China.
Abstract δ-AlOOH is regarded as a potential water carrier that is stable in the Earth’s lower mantle down to the core-mantle boundary along the cold slab geotherm; thus, knowledge of its structural evolution under high pressure is very important for understanding water transport in the Earth’s interior. In this work, we conducted Raman scattering and luminescence spectroscopic experiments on δ-AlOOH at pressures up to 34.6 and 22.1 GPa, respectively. From the collected Raman spectra, significant changes in the pressure dependence of the frequencies of Raman-active modes were observed at ~8 GPa, with several modes displaying softening behavior. In particular, the soft A1 mode, which corresponds to a lattice vibration of the AlO6 octahedron correlated to OH stretching vibrations, decreases rapidly with increasing pressure and shows a trend of approaching 0 cm−1 at ~9 GPa according to a quadratic polynomial extrapolation. These results provide clear Raman-scattering spectroscopic evidence for the P21nm-to-Pnnm structural transition. Similarly, the phase transition was also observed in the luminescence spectra of Cr3+ in both powder and single-crystal δ-AlOOH samples, characterized by abrupt changes in the pressure dependences of the wavelength of the R-lines and sidebands across the P21nm-to-Pnnm transition. The continuous decrease in R2-R1 splitting with pressure indicated that the distortion of the AlO6 octahedron was suppressed under compression. No abnormal features were clearly observed in our Raman or luminescence spectra at ~18 GPa, where the ordered symmetrization or fully centered state with hydrogen located at the midpoint of the hydrogen bond was observed by a previous neutron diffraction study. However, some subtle changes in Raman and luminescence spectra indicated that the ordered symmetrization state might form at around 16 GPa.
Nearly all displacive transitions have been considered to be continuous or second order, and the rigid unit mode (RUM) provides a natural candidate for the soft mode. However, in-situ X-ray diffraction and Raman measurements show clearly the first-order evidences for the scheelite-to-fergusonite displacive transition in BaWO4: a 1.6% volume collapse, coexistence of phases, and hysteresis on release of pressure. Such first-order signatures are found to be the same as the soft modes in BaWO4, which indicates the scheelite-to-fergusonite displacive phase transition hides a deeper physical mechanism. By the refinement of atomic displacement parameters, we further show that the first-order character of this phase transition stems from a coupling of large compression of soft BaO8 polyhedrons to the small displacive distortion of rigid WO4 tetrahedrons. Such a coupling will lead to a deeper physical insight in the phase transition of the common scheelite-structured compounds.
BaWO4-II has been synthesized at 5 GPa and 610°C. Its high pressure behavior was studied by in situ synchrotron X-ray diffraction measurements at room temperature up to 17 GPa. BaWO4-II retains its monoclinic structure. Bulk and axial moduli determined by fitting a third-order Birch–Murnaghan equation of state to lattice parameters are: K 0=86.2±1.9 GPa, K 0(a)=56.0±0.9 GPa, K 0(b)=85.3±2.4 GPa, and K 0(c)=146.1±3.2 GPa with a fixed K′=4. Analysis of axial compressible modulus shows that the a-axis is 2.61 times more compressible than the c-axis and 1.71 times more compressible than the b-axis. The beta angle decreases smoothly between room pressure and 17 GPa from 93.78° to 90.90°.
Mineral dehydration in the subduction zone enormously affects Earth’s geodynamics and the global geochemical cycles of elements. This work uses Raman spectroscopy and X-ray diffraction to investigate the dehydration process of antigorite under compression and shear loading conditions in a rotational diamond anvil cell (RDAC) at room temperature. In order to compare the shear effects, T301 stainless steel and Kapton plastic are applied as the gasket materials. In the experiment using a high-strength T301 stainless steel gasket, two new broad OH-stretching peaks of H2O and H3O2− appear at 3303 and 3558 cm−1, respectively, at 1.7 GPa. The original sharp OH-stretching peaks of antigorite at 3668 and 3699 cm−1 remain, while the central pressure is increased to 8.0 GPa, and the largest pressure gradient is about 2.5 GPa in the sample chamber. In another experiment with a low-strength gasket of Kapton plastic, two new OH-stretching broad peaks of H2O and H3O2− also start to appear at 3303 and 3558 cm−1, respectively, at a lower pressure of 0.3 GPa, but the original sharp OH-stretching peaks of antigorite at 3668 and 3699 cm−1 almost completely vanish as the central pressure reaches 3.0 GPa, with the largest pressure gradient at around 4.8 GPa. The comparison between the two experiments shows that antigorite is easier to dehydrate in the chamber of a Kapton plastic gasket with a larger gradient of shear stress. However, its axial compression stress is lower. The high-pressure Raman spectra of MgO2(OH)4 octahedron and SiO4 tetrahedron in the low wavenumber zones (100–1200 cm−1) combined with the micro-beam X-ray diffraction spectrum of the recovered product strongly support the structural breakdown of antigorite. This investigation reveals that the water-bearing silicate minerals have strong shear dehydration in the cold subduction zone of the plate, which has important applications in predicting the physical and chemical properties of subduction zones and deducing the rate of plate subduction.
Abstract The presence of the van der Waals gap in layered materials creates a wealth of intriguing phenomena different to their counterparts in conventional materials. For example, pressurization can generate a large anisotropic lattice shrinkage along the stacking orientation and/or a significant interlayer sliding, and many of the exotic pressure-dependent properties derive from these mechanisms. Here we report a giant piezoresistivity in pressurized β ′-In 2 Se 3 . Upon compression, a six-orders-of-magnitude drop of electrical resistivity is obtained below 1.2 GPa in β′ -In 2 Se 3 flakes, yielding a giant piezoresistive gauge π p of −5.33 GPa −1 . Simultaneously, the sample undergoes a semiconductor-to-semimetal transition without a structural phase transition. Surprisingly, linear dichroism study and theoretical first principles modelling show that these phenomena arise not due to shrinkage or sliding at the van der Waals gap, but rather are dominated by the layer-dependent atomic motions inside the quintuple layer, mainly from the shifting of middle Se atoms to their high-symmetric location. The atomic motions link to both the band structure modulation and the in-plane ferroelectric dipoles. Our work not only provides a prominent piezoresistive material but also points out the importance of intralayer atomic motions beyond van der Waals gap.
Nanocrystalline magnesium aluminate was synthesized with the coprecipitation method. Its growing behaviors as a function of temperature were studied with synchrotron X-ray diffraction (XRD) and Raman spectroscopy. It is found that the particle growth was greatly inhibited at temperatures below 1000 °C due to the hydroxide precursor reactants. Above 1000 °C, magnesium aluminate nanoparticles start to grow fast. After two hours annealing at 1200 °C, the grain size changes by multiple folds, suggesting that oriented attachment may occur. Above 1200 °C, the grain size changes in various directions are much smaller than the average grain size, indicating the oriented attachment mechanisms become inactive in the growth of MgAl2O4 nanoparticles with sizes larger than 42 nm.
The grain size doubling of nickel nanocrystals in calcination reveals that oriented attachment (OA), which generally involves the use of a liquid medium, can occur in solid state as well and dominate the nano-grain coarsening.