The South Mid-Atlantic Ridge is a typical slow-spreading ridge that represents a modern example to understand mantle composition and the evolution of mid-ocean ridge magmatism. In this paper, we investigate basalt samples dredged from four locations along the South Mid-Atlantic Ridge ranging from 18.0° to 20.6°S. The basalts belong to the tholeiitic series and exhibit normal mid-ocean ridge basalt (N-MORB) geochemical features with variable enrichments of Rb, Th, U, and Pb and depletions of Ba and Sr relative to primitive mantle. Some samples have negative Nb–Ta anomalies whereas others have positive Na–Ta anomalies to average N-MORBs. Plagioclase phenocrysts, microphenocrysts, and microlites occur in the in the matrix; phenocrysts and microphenocrysts are bytownite and labradorite in composition. Olivine phenocrysts are forsterite (Fo87 to Fo96). Chemical zoning in phenocrysts are interpreted to record crystal fractionation and magma mixing. Cores of plagioclase phenocrysts have higher anorthite values (An72–83) and estimated crystallization temperatures (~1180–1240 °C) that may suggest a xenocrystic origin. The lower anorthite proportions of rims of plagioclase phenocrysts (An65–71) and microphenocrysts (An54–72) yield lower estimated crystallization temperatures of ~1090–1120 °C and ~980–1060 °C, respectively. Rims of plagioclase phenocrysts and microphenocrysts may be generated in different environments such as magma chambers or magma channels, respectively. The basalt samples probably originated from partial melting of a depleted mantle spinel lherzolite source with a minor contribution of enriched materials possibly derived from the Saint Helena plume and subcontinental lithospheric mantle in the asthenosphere. Variable compositions of the basalt samples suggest heterogeneous mantle that includes depleted and enriched components at the South Mid-Atlantic Ridge between 18.0°–20.6°S.
The ubiquity of glycerol dibiphytanyl glycerol tetraethers (GDGTs) and their temperature sensitivity make them one of the most effective tools for paleoclimate reconstruction. High- and low-latitude climates influence the Okinawa Trough (OT). It receives diverse inputs from the East China Sea, the western Pacific, and the Kuroshio Current, providing good conditions for paleoclimate studies. Here, isoprenoid GDGTs (isoGDGTs), branched GDGTs, and hydroxylated GDGTs (OH-GDGTs) were studied to reconstruct the sea surface temperature (SST) of the central OT for the past 8.2 kyr using the tetraether index of 86 carbon atoms at low latitudes (TEX H 86 ) and the ring index of OH-GDGTs (RI-OH). The GDGT-0/crenarchaeol ratios ranged from 0.39 to 0.98. The branched and isoprenoid tetraether index and the methane index values were lower than 0.1 and 0.5, respectively, indicating that the isoGDGTs were mainly derived from marine Thaumarchaeota and that TEX H 86 could be used to reconstruct the paleotemperatures. The TEX H 86 SSTs ranged from 21.6 to 27.2°C during 8.2 kyr. The overall range of TEX H 86 SSTs is close to the U K’ 37 SST of the middle OT and reflects the mean annual SST. In contrast, RI-OH temperatures varied from 17.4 to 26.0°C, showing a lower trend than TEX H 86 SSTs. The core top RI-OH temperature is 24.1°C, in line with the mean annual seawater temperature at 40 m (24.2°C) in the study area, which likely reflects the subsurface temperature in this case. The small overall warming trend of TEX H 86 SSTs agrees with the increasing intensity of the Kuroshio Current during the last 8.2 kyr, indicating that the SST evolution is governed by the Kuroshio Current that transports heat from the western tropical Pacific. The decreasing temperature differences between TEX H 86 and RI-OH and between U K’ 37 and RI-OH showed increased mixing of the upper water column, which was in good accordance with the increasing low-latitude winter insolation decoupling from the East Asian summer monsoon. The cold event that occurred at 7.4–6.6 kyr was magnified (∼5°C) at the TEX H 86 and RI-OH temperatures and possibly caused by tephra’s significant input (∼7.3 kyr).
Abstract We examined two low‐temperature hydrothermal deposits rich in Fe‐Si‐Mn collected from the recently discovered hydrothermal fields at the Southwest Indian Ridge using mineralogical, geochemical, and molecular biological techniques. The mineralogical and geochemical analyses indicated that the low‐temperature hydrothermal fields would provide a warm and chemical species‐rich habitat for chemosynthetic‐based hydrothermal ecosystems. Analyses of 16S rRNA sequences showed that ζ‐Proteobacteria, Pseudoalteromonas , Leptothrix , and Pseudomonas were potential Fe and Mn oxidizers in the low‐temperature hydrothermal environments, but they were not present in equal abundance among the subniches. Some potential Fe and Mn reducers were also recovered; they were more commonly found in the exterior black Fe‐Mn oxides. The difference between the exterior black Fe‐Mn oxides and the interior Opal‐A could be related to differences in in situ physicochemical conditions. We also identified microbial players that may participate in sulfur (S) geochemical cycling in these low‐temperature hydrothermal environments via analyses of 16S rRNA sequences and the aprA functional gene. The results indicated that members of γ‐Proteobacteria and α‐Proteobacteria were involved in the S oxidation process, while members of δ‐Proteobacteria, Nitrospirae, Firmicutes, and Archaea might participate in the S reduction process. Fe, Mn, and S oxidizers and reducers might actively participate in hydrothermal biogeochemical processes, which could influence the transfer of chemical species and the formation of biogenic minerals.
The East Asian Monsoon (EAM) is a regional factor affecting the East Asian climate and the oceanographic processes of the marginal seas along the Western Pacific. Finding proxies for the EAM intensity and reconstructing the interannual and interdecadal variations of the EAM using high-resolution records are necessary to improve our understanding of the EAM’s role in the global climate system and for predicting climate change. In this paper, high-resolution sedimentary records of sedimentary core C0702 obtained from the inner continental shelf of the East China Sea were comprehensively analyzed using a laser particle size analyzer, an Itrax TM core scanner, and a 210 Pb and 137 Cs radionuclide analyzer to explore potential proxies for the East Asian Winter Monsoon (EAWM). By combining the obtained results with instrumental observations of the EAM, we established a quantitative formula for the EAWM, which enables to reconstruct the evolution trend of the EAWM during the past 130 years. The sensitive grain-size component F2, with a grain-size range of 14.35–230 µm, and principal component PC1 of the sedimentary deposits of the East China Sea inner shelf can be used as EAWM proxies. The evolution of EAWM in 1880–1950 could be roughly divided into two stages: a weak EAWM period from 1882 to 1900 and a strong EAWM period from 1900 to 1945. This study improves our understanding of the variations in the EAWM on interannual and interdecadal temporal scales.
Abstract Iron (Fe), sulfur (S), and molybdenum (Mo) geochemistry in marine sediments impacted by hydrothermal plumes and/or cold seeps is complex and has not been systematically documented. Here we characterize Fe, S, and Mo diagenesis in sediments between the Minami‐Ensei Knoll hydrothermal field and a cold‐seep site of the middle Okinawa Trough. Results show that distances away from the hydrothermal field and the steep trough slope may significantly affect the transport of hydrothermal Fe. The transformation of hydrothermal reactive Fe to poorly reactive or unreactive Fe‐bearing phyllosilicates decreased the relative fractions of highly reactive Fe (Fe HR ) in total Fe (Fe HR /Fe T ). Despite this, the standing stocks of Fe oxides in the methane‐free sediments have not been dampened, indicating no net impacts of hydrothermal Fe inputs on the size of Fe oxides. In the methane‐free sediments, low ratios of total reduced inorganic sulfide (TRIS) to total organic carbon (TOC) (TRIS/TOC), highly 34 S‐depleted pyrite, and low Mo contents suggest that organoclastic sulfate reduction is at low rates and plays a limited role in carbon cycle. In the cold‐seep sediments, however, intense sulfate reduction coupled to anaerobic methane oxidation significantly elevate TRIS/TOC ratios, Mo enrichment, and isotope compositions of Mo and pyrite‐S. This pathway is expected to be important in carbon cycle in the basin due to the wide occurrence of cold seeps. Our results highlight the important controls of the local extreme depositional/diagenetic conditions on sedimentary S and Mo records, with implications for the reconstruction of paleoredox states of the past earth's surface.
Natural gas hydrates have been hailed as a new and promising unconventional alternative energy, especially as fossil fuels approach depletion, energy consumption soars, and fossil fuel prices rise, owing to their extensive distribution, abundance, and high fuel efficiency. Gas hydrate reservoirs are similar to a storage cupboard in the global carbon cycle, containing most of the world's methane and accounting for a third of Earth's mobile organic carbon. We investigated gas hydrate stability zone burial depths from the viewpoint of conditions associated with stable existence of gas hydrates, such as temperature, pressure, and heat flow, based on related data collected by the global drilling programs. Hydrate‐related areas are estimated using various biological, geochemical and geophysical tools. Based on a series of previous investigations, we cover the history and status of gas hydrate exploration in the USA, Japan, South Korea, India, Germany, the polar areas, and China. Then, we review the current techniques for hydrate exploration in a global scale. Additionally, we briefly review existing techniques for recovering methane from gas hydrates, including thermal stimulation, depressurization, chemical injection, and CH 4 –CO 2 exchange, as well as corresponding global field trials in Russia, Japan, United States, Canada and China. In particular, unlike diagenetic gas hydrates in coarse sandy sediments in Japan and gravel sediments in the United States and Canada, most gas hydrates in the northern South China Sea are non‐diagenetic and exist in fine‐grained sediments with a vein‐like morphology. Therefore, especially in terms of the offshore production test in gas hydrate reservoirs in the Shenhu area in the north slope of the South China Sea, Chinese scientists have proposed two unprecedented techniques that have been verified during the field trials: solid fluidization and formation fluid extraction. Herein, we introduce the two production techniques, as well as the so‐called “four‐in‐one” environmental monitoring system employed during the Shenhu production test. Methane is not currently commercially produced from gas hydrates anywhere in the world; therefore, the objective of field trials is to prove whether existing techniques could be applied as feasible and economic production methods for gas hydrates in deep‐water sediments and permafrost zones. Before achieving commercial methane recovery from gas hydrates, it should be necessary to measure the geologic properties of gas hydrate reservoirs to optimize and improve existing production techniques. Herein, we propose horizontal wells, multilateral wells, and cluster wells improved by the vertical and individual wells applied during existing field trials. It is noteworthy that relatively pure gas hydrates occur in seafloor mounds, within near‐surface sediments, and in gas migration conduits. Their extensive distribution, high saturation, and easy access mean that these types of gas hydrate may attract considerable attention from academia and industry in the future. Herein, we also review the occurrence and development of concentrated shallow hydrate accumulations and briefly introduce exploration and production techniques. In the closing section, we discuss future research needs, key issues, and major challenges related to gas hydrate exploration and production. We believe this review article provides insight on past, present, and future gas hydrate exploration and production to provide guidelines and stimulate new work into the field of gas hydrates.