Due to the fact that not all eutrophic lakes have cyanobacteria blooms, we hypothesized Fe may be another important limiting factor which regulates cyanobacteria bloom formation. We tested the hypothesis by batch cultures of bloom-forming Cyanobacterium, Microcystis aeruginosa with different ethylenediaminetetraacetic acid (EDTA)-Fe concentrations (0.5–6.0 mg/L), three levels of initial biomass, and excessive N and P (N = 4.2 mg/L, P = 0.186 mg/L) to simulate dynamically a cyanobacteria bloom in eutrophic conditions. The effect of EDTA and Fe uptake kinetics by M. aeruginosa were also examined. Results showed M. aeruginosa growth rate positively correlated with EDTA-Fe concentration and negatively correlated with biomass. Maximal biomass of M. aeruginosa was determined by Fe availability and initial biomass. EDTA could decrease both Fe availability and toxicity. Based on experimental results, a conceptual model of how Fe availability regulates cyanobacterial biomass in eutrophic lakes was developed. This study demonstrated bioavailable Fe is a potential limiting factor in eutrophic lakes that should be included in eutrophication management strategies.
Intrauterine exposure to heavy metals may adversely affect the developing fetus and health later in life, while certain trace elements may be protective. There is limited data on their dynamic fluctuation in circulating concentration of women from preconception to pregnancy and the degree of transplacental passage to fetus. Such information is critically needed for an optimal design of research studies and intervention strategies. In the present study, we profiled the longitudinal patterns and trajectories of metal(loid)s and trace elements from preconception to late pregnancy and in newborns. We measured whole blood metal(loid)s in women at preconception, 16, 24 and 32 weeks of gestation and in cord blood in 100 mother-newborn pairs. Our data showed that the mean concentrations of mercury (Hg), lead (Pb), rubidium (Rb), manganese (Mn), and iron (Fe) were lower during early-, mid-, and late-pregnancy than at preconception. Copper (Cu), and calcium (Ca) concentrations increased after pregnancy (Cu 798 versus 1353, 1488, and 1464 μg/L). Concentrations at preconception were correlated with those during pregnancy for all examined metal(loid)s. Maternal Hg, Pb, and Se concentrations at late-pregnancy were correlated with those in newborn cord blood in various degrees (correlation coefficients: Hg 0.66, Pb 0.29, Se 0.39). The estimated placental transfer ratio for toxic metal(loid)s ranging from 1.68 (Hg) to 0.18 (Cd). Two trajectory groups were identified for Hg, Pb, Cd, Se concentrations. Hg concentrations may be correlated with maternal education levels. The study is the first to present longitudinal circulating concentration trajectories of toxic metal(loid)s and trace elements from preconception to pregnancy stages. A high degree of transplacental passage was observed in toxic metals Pb and Hg which may pose hazards to the developing fetus.
The Green Sea Turtle ( Chelonia mydas ) is an umbrella species in the South China Sea, a Chinese national first-level protected wild animal, and the only sea turtle that nests in waters around China. The largest C. mydas nesting ground is distributed in the Xisha (Paracel) Islands, which plays a vital role in the survival of sea turtle populations in the region. This study reveals the genetic diversity and population structure of the breeding population of C. mydas in the Xisha (Paracel) Islands using three mitochondrial markers. A total of 15 D-loop, five Cytochrome b (Cyt b), and seven Cytochrome C Oxidase subunit I (COI) haplotypes were identified in the breeding population of C. mydas in the Xisha (Paracel) Islands. D-loop haplotypes are distributed in clades III, IV, and VIII of the C. mydas mitochondrial control region. It is the first time that one haplotype from Clade IV was found in this C. mydas population, and five new D-loop haplotypes were also identified. The haplotype and nucleotide diversity were calculated for each marker: D-loop (0.415 haplotype diversity, 0.00204 nucleotide diversity), Cyt b (0.140, 0.00038) and COI (0.308, 0.00083). The average genetic distance ( p ) of each molecular marker was less than 0.01. Neutral detection and nucleotide mismatch analysis suggested that the breeding population of C. mydas in the Xisha (Paracel) Islands did not experience a population expansion event in recent history. It is recommended that a sea turtle protection area be established in the Xisha (Paracel) Islands area to strengthen protection and effectively protect the uniqueness and sustainability of the breeding population of C. mydas in the South China Sea.
Long-term exposure to low polycyclic aromatic hydrocarbon (PAH) concentration may ave detrimental effects, including changing platelet indices. Effects of chronic exposure to low PAH concentrations have been evaluated in cross-sectional, but not in longitudinal studies, to date. We aimed to assess the effects of long-term exposure to the low-concentration PAHs on alterations in platelet indices in the Chinese population. During 2014–2017, we enrolled 222 participants who had lived in a village in northern China, 1–2 km downwind from a coal plant, for more than 25 years, but who were not employed by the plant or related businesses. During three follow-ups, annually in June, demographic information and urine and blood samples were collected. Eight PAHs were tested: namely 2-hydroxynaphthalene, 1-hydroxynaphthalene, 2-hydroxyfluorene, 9-hydroxyfluorene (9-OHFlu), 2-hydroxyphenanthrene (2-OHPh), 1-hydroxyphenanthrene (1-OHPh), 1-hydroxypyrene (1-OHP), and 3-hydroxybenzo [a] pyrene. Five platelet indices were measured: platelet count (PLT), platelet distribution width (PDW), mean platelet volume (MPV), platelet crit, and the platelet-large cell ratio. Generalized mixed and generalized linear mixed models were used to estimate correlations between eight urinary PAH metabolites and platelet indices. Model 1 assessed whether these correlations varied over time. Models 2 and 3 adjusted for additional personal information and personal habits. We found the following significant correlations: 2-OHPh (Model1 β 1 = 18.06, Model2 β 2 = 18.54, Model β 3 = 18.54), 1-OHPh (β 1 = 16.43, β 2 = 17.42, β 3 = 17.42), 1-OHP(β 1 = 13.93, β 2 = 14.03, β 3 = 14.03) with PLT, as well as 9-OHFlu with PDW and MPV (odds ratio or Model3 OR PDW [95%CI] = 1.64[1.3–2.06], OR MPV [95%CI] = 1.33[1.19–1.48]). Long-term exposure to low concentrations of PAHs, indicated by2-OHPh, 1-OHPh, 1-OHP, and 9-OHFlu, as urinary biomarkers, affects PLT, PDW, and MPV. 9-OHFlu increased both PDW and MPV after elimination of the effects of other PAH exposure modes.
Characterizing urban expansion patterns is of great significance to planning and decision-making for urban agglomeration development. This study examined the urban expansion in the entire Yangtze River Delta Region (YRDR) with its land-use data of six years (1995, 2000, 2005, 2010, 2015, and 2018). On the basis of traditional methods, we comprehensively considered the four aspects of urban agglomeration: expansion speed, expansion difference, expansion direction, and landscape pattern, as well as the interconnection of and difference in the expansion process between each city. The spatiotemporal heterogeneity of urban expansion development in this region was investigated by using the speed and differentiation indices of urban expansion, gravity center migration, landscape indices, and spatial autocorrelations. The results show that: (1) over the 23 years, the expansion of built-up land in the Yangtze River Delta Region was significant, (2) the rapidly expanding cities were mainly located along the Yangtze River and coastal areas, while the slowly expanding cities were mainly located in the inland areas, (3) the expansion direction of each city varied and the gravity center of the urban agglomeration moved toward the southwest, and (4) the spatial structure of the region became more clustered, the shape of built-up land turned simpler, and fragmentation decreased. This study unravels the spatiotemporal change of urban expansion patterns in this large urban agglomeration, and more importantly, can serve as a guide for formulating urban agglomeration development plans.
With decades of urbanization, housing and community problems (e.g., poor ventilation and lack of open public spaces) have become important social determinants of health that require increasing attention worldwide. Knowledge regarding the link between health and these problems can provide crucial evidence for building healthy communities. However, this link has heretofore not been identified in Hong Kong, and few studies have compared the health impact of housing and community conditions across different income groups. To overcome this gap, we hypothesize that the health impact of housing and community problems may vary across income groups and across health dimensions. We tested these hypotheses using cross-sectional survey data from Hong Kong. Several health outcomes, e.g., chronic diseases and the SF-12 v. 2 mental component summary scores, were correlated with a few types of housing and community problems, while other outcomes, such as the DASS-21–Stress scores, were sensitive to a broader range of problems. The middle- and low-income group was more severely affected by poor built environments. These results can be used to identify significant problems in the local built environment, especially amongst the middle- and low-income group.