Soil moisture (SM) plays an important role in hydrological cycle and weather forecasting. Satellite provides the only viable approach to regularly observe large-scale SM dynamics. Conventionally, SM is estimated from satellite observations based on the radiative transfer theory. Recent studies have demonstrated that the neural network (NN) method can retrieve SM with comparable accuracy as conventional methods. Here, we are interested in whether the NN model with more complex structures, namely deep convolutional neural network (DCNN), can bring about further improvement in SM retrievals when compared with the NN model used in recent studies. To achieve this objective, the same input data are used for the DCNN and NN models, including L-band Soil Moisture and Ocean Salinity (SMOS) brightness temperature (TB), C-band Advanced Scatterometer (ASCAT) backscattering coefficients, Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and soil temperature. The target SM used to train the DCNN and NN models is the European Center for Medium-range Weather Forecasts Re-Analysis Interim (ERA-Interim) product. The experiment consists of two phases: the learning phase from 1 January to 31 December 2015 and the testing phase from 1 January to 31 December 2016. In the learning phase, we train the DCNN and NN models using the ERA-Interim SM. When evaluation between DCNN and NN against in situ measurements in the testing phase, we find that the temporal correlations between DCNN SM and in situ measurements are higher than those between NN SM and in situ measurements by 6 . 2 % and 2 . 5 % on ascending and descending orbits, respectively. In addition, from the perspective of temporal and spatial dynamics, the simulated SM values by DCNN/NN and the ERA-Interim SM agree relatively well at a global scale. Results suggest that both NN and DCNN models are effective in estimating SM from satellite observations, and DCNN can achieve slightly better performance than NN.
Hypergraph is an effective method used to represent the contextual correlation within hyperspectral imagery for clustering. Nevertheless, how to discover the closely correlated samples to form hyperedges is the key issue for constructing an informative hypergraph. In this article, a new spatial–spectral locality constrained elastic net hypergraph learning model is proposed for hyperspectral image clustering (i.e. unsupervised classification). In order to utilize the spatial–spectral correlation among the pixels in hyperspectral images, first, we construct a locality-constrained dictionary by selecting K relevant pixels within a spatial neighbourhood, which activates the most correlated atoms and suppresses the uncorrelated ones. Second, each pixel is represented as a linear combination of the atoms in the dictionary under the elastic net regularization. Third, based on the obtained representations, the pixels and their most related pixels are linked as hyperedges, which can effectively capture high–order relationships among the pixels. Finally, a hypergraph Laplacian matrix is built for unsupervised learning. Experiments have been conducted on two widely used hyperspectral images, and the results show that the proposed method can achieve a superior clustering performance when compared to state-of-the-art methods.
The fusion of spatial and spectral information in hyperspectral images (HSIs) is useful for improving the classification accuracy. However, this approach usually results in features of higher dimension and the curse of the dimensionality problem may arise resulting from the small ratio between the number of training samples and the dimensionality of features. To ease this problem, we propose a novel algorithm for spatial-spectral feature extraction based on hypergraph embedding. Firstly, each HSI pixel is regarded as a vertex and the joint of extended morphological profiles (EMP) and spectral features is adopted as the feature associated with the vertex. A hypergraph is then constructed by the K-Nearest-Neighbor method, in which each pixel and its most K relevant pixels are linked as one hyperedge to represent the complex relationships between HSI pixels. Secondly, the hypergraph embedding model is designed to learn a low dimensional feature with the reservation of geometric structure of HSI. An adaptive hyperedge weight estimation scheme is also introduced to preserve the prominent hyperedges by the regularization constraint on the weight. Finally, the learned low-dimensional features are fed to the support vector machine (SVM) for classification. The experimental results on three benchmark hyperspectral databases are presented. They highlight the importance of spatial–spectral joint features embedding for the accurate classification of HSI data. The weight estimation is better for further improving the classification accuracy. These experimental results verify the proposed method.
This paper proposes a novel deep learning framework named bidirectional-convolutional long short term memory (Bi-CLSTM) network to automatically learn the spectral-spatial features from hyperspectral images (HSIs). In the network, the issue of spectral feature extraction is considered as a sequence learning problem, and a recurrent connection operator across the spectral domain is used to address it. Meanwhile, inspired from the widely used convolutional neural network (CNN), a convolution operator across the spatial domain is incorporated into the network to extract the spatial feature. In addition, to sufficiently capture the spectral information, a bidirectional recurrent connection is proposed. In the classification phase, the learned features are concatenated into a vector and fed to a Softmax classifier via a fully-connected operator. To validate the effectiveness of the proposed Bi-CLSTM framework, we compare it with six state-of-the-art methods, including the popular 3D-CNN model, on three widely used HSIs (i.e., Indian Pines, Pavia University, and Kennedy Space Center). The obtained results show that Bi-CLSTM can improve the classification performance by almost 1.5 % as compared to 3D-CNN.
Aerosol optical depth (AOD) is an important metric for the concentration of aerosols in the atmosphere. Dark target (DT) algorithm is a widely used physical model to retrieve AOD over land from Moderate Resolution Imaging Spectroradiometer (MODIS) data. However, due to the limitation of surface ‘dark-target’ in some regions and over certain surface types, it does not work very well. In this paper, we propose two hybrid frameworks based on ridge regression (RR) to improve the retrieval accuracy. They are serial and parallel approaches. In both frameworks, the DT algorithm is used as a baseline to derive an initial result, and the bias between the derived AOD and the ground-truth is corrected by the RR model. To validate the effectiveness of the proposed methods, we apply them on 3093 collocated MODIS and Aerosol Robotic Network (AERONET) observations, covering 10 stations at all available time in China. The obtained results demonstrate that the proposed methods can improve retrieval performance compared to the corresponding DT algorithm and the RR model.