Soil moisture deficiency is a major factor in determining crop yields in water-limited agricultural production regions. Evapotranspiration (ET), which consists of crop water use through transpiration and water loss through direct soil evaporation, is a good indicator of soil moisture availability and vegetation health. ET therefore has been an integral part of many yield estimation efforts. The Evaporative Stress Index (ESI) is an ET-based crop stress indicator that describes temporal anomalies in a normalized evapotranspiration metric as derived from satellite remote sensing. ESI has demonstrated the capacity to explain regional yield variability in water-limited regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded due to interannual phenological variability. This investigation selected three study sites across the U.S. Corn Belt – Mead, NE, Ames, IA and Champaign, IL – to investigate the potential operational value of 30-m resolution, phenologically corrected ESI datasets for yield prediction. The analysis was conducted over an 8-year period from 2010 to 2017, which included both drought and pluvial conditions as well as a broad range in yield values. Detrended yield anomalies for corn and soybean were correlated with ESI computed using annual ET curves temporally aligned based on (1) calendar date, (2) crop emergence date, and (3) a growing degree day (GDD) scaled time axis. Results showed that ESI has good correlations with yield anomalies at the county scale and that phenological corrections to the annual temporal alignment of the ET timeseries improve the correlation, especially when the time axis is defined by GDD rather than the calendar date. Peak correlations occur in the silking stage for corn and the reproductive stage for soybean – phases when these crops are particularly sensitive to soil moisture deficiencies. Regression equations derived at the time of peak correlation were used to estimate yields at county scale using a leave-one-out cross-validation strategy. The ESI-based yield estimates agree well with the USDA National Agricultural Statistics Service (NASS) county-level crop yield data, with correlation coefficients ranging from 0.79 to 0.93 and percent root-mean-square errors of 5–8%. These results demonstrate that remotely sensed ET at high spatiotemporal resolution can convey valuable water stress information for forecasting crop yields across the Corn Belt if interannual phenological variability is considered.
The utility of remote sensing data in crop yield modeling has typically been evaluated at the regional or state level using coarse resolution (>250 m) data. The use of medium resolution data (10–100 m) for yield estimation at field scales has been limited due to the low temporal sampling frequency characteristics of these sensors. Temporal sampling at a medium resolution can be significantly improved, however, when multiple remote sensing data sources are used in combination. Furthermore, data fusion approaches have been developed to blend data from different spatial and temporal resolutions. This paper investigates the impacts of improved temporal sampling afforded by multi-source datasets on our ability to explain spatial and temporal variability in crop yields in central Iowa (part of the U.S. Corn Belt). Several metrics derived from vegetation index (VI) time-series were evaluated using Landsat-MODIS fused data from 2001 to 2015 and Landsat-Sentinel2-MODIS fused data from 2016 and 2017. The fused data explained the yield variability better, with a higher coefficient of determination (R2) and a smaller relative mean absolute error than using a single data source alone. In this study area, the best period for the yield prediction for corn and soybean was during the middle of the growing season from day 192 to 236 (early July to late August, 1–3 months before harvest). These findings emphasize the importance of high temporal and spatial resolution remote sensing data in agricultural applications.
Land surface temperature (LST) is a key diagnostic indicator of agricultural water use and crop stress. LST data retrieved from thermal infrared (TIR) band imagery, however, tend to have a coarser spatial resolution (e.g., 100 m for Landsat 8) than surface reflectance (SR) data collected from shortwave bands on the same instrument (e.g., 30 m for Landsat). Spatial sharpening of LST data using the higher resolution multi-band SR data provides an important path for improved agricultural monitoring at sub-field scales. A previously developed Data Mining Sharpener (DMS) approach has shown great potential in the sharpening of Landsat LST using Landsat SR data co-collected over various landscapes. This work evaluates DMS performance for sharpening ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST (~70 m native resolution) and Visible Infrared Imaging Radiometer Suite (VIIRS) LST (375 m) data using Harmonized Landsat and Sentinel-2 (HLS) SR data, providing the basis for generating 30-m LST data at a higher temporal frequency than afforded by Landsat alone. To account for the misalignment between ECOSTRESS/VIIRS and Landsat/HLS caused by errors in registration and orthorectification, we propose a modified version of the DMS approach that employs a relaxed box size for energy conservation (EC). Sharpening experiments were conducted over three study sites in California, and results were evaluated visually and quantitatively against LST data from unmanned aerial vehicles (UAV) flights and from Landsat 8. Over the three sites, the modified DMS technique showed improved sharpening accuracy over the standard DMS for both ECOSTRESS and VIIRS, suggesting the effectiveness of relaxing EC box in relieving misalignment-induced errors. To achieve reasonable accuracy while minimizing loss of spatial detail due to the EC box size increase, an optimal EC box size of 180-270 m was identified for ECOSTRESS and about 780 m for VIIRS data based on experiments from the three sites. Results from this work will facilitate the development of a prototype system that generates high spatiotemporal resolution LST products for improved agricultural water use monitoring by synthesizing multi-source remote sensing data.
Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening techniques have been developed to sharpen TIR imagery to shortwave band pixel resolutions, which are often fine enough for field-scale applications. A classic thermal sharpening technique, TsHARP, uses a relationship between land surface temperature (LST) and Normalized Difference Vegetation Index (NDVI) developed empirically at the TIR pixel resolution and applied at the NDVI pixel resolution. However, recent studies show that unique relationships between temperature and NDVI may only exist for a limited class of landscapes, with mostly green vegetation and homogeneous air and soil conditions. To extend application of thermal sharpening to more complex conditions, a new data mining sharpener (DMS) technique is developed. The DMS approach builds regression trees between TIR band brightness temperatures and shortwave spectral reflectances based on intrinsic sample characteristics. A comparison of sharpening techniques applied over a rainfed agricultural area in central Iowa, an irrigated agricultural region in the Texas High Plains, and a heterogeneous naturally vegetated landscape in Alaska indicates that the DMS outperformed TsHARP in all cases. The artificial box-like patterns in LST generated by the TsHARP approach are greatly reduced using the DMS scheme, especially for areas containing irrigated crops, water bodies, thin clouds or terrain. While the DMS technique can provide fine resolution TIR imagery, there are limits to the sharpening ratios that can be reasonably implemented. Consequently, sharpening techniques cannot replace actual thermal band imagery at fine resolutions or missions that provide high quality thermal band imagery at high temporal and spatial resolution critical for many agricultural, land use and water resource management applications.
Abstract Forest dynamics is highly relevant to a broad range of earth science studies, many of which have geographic coverage ranging from regional to global scales. While the temporally dense Landsat acquisitions available in many regions provide a unique opportunity for understanding forest disturbance history dating back to 1972, large quantities of Landsat images will need to be analysed for studies at regional to global scales. This will not only require effective change detection algorithms, but also highly automated, high level preprocessing capabilities to produce images with subpixel geolocation accuracies and best achievable radiometric consistency, a status called imagery-ready-to-use (IRU). This paper describes a streamlined approach for producing IRU quality Landsat time series stacks (LTSS). This approach consists of an image selection protocol, high level preprocessing algorithms and IRU quality verification procedures. The high level preprocessing algorithms include updated radiometric calibration and atmospheric correction for calculating surface reflectance and precision registration and orthorectification routines for improving geolocation accuracy. These automated routines have been implemented in the Landsat Ecosystem Disturbance Adaptive System (LEDAPS) designed for processing large quantities of Landsat images. Some characteristics of the LTSS developed using this approach are discussed.
Evapotranspiration (ET) is a crucial part of commercial grapevine production in California, and the partitioning of this quantity allows the separate assessment of soil and vine water and energy fluxes. This partitioning has an important role in agriculture since it is related to grapevine stress, yield quality, irrigation efficiency, and growth. Satellite remote sensing-based methods provide an opportunity for ET partitioning at a subfield scale. However, medium-resolution satellite imagery from platforms such as Landsat is often insufficient for precision agricultural management at the plant scale. Small, unmanned aerial systems (sUAS) such as the AggieAir platform from Utah State University enable ET estimation and its partitioning over vineyards via the two-source energy balance (TSEB) model. This study explores the assessment of ET and ET partitioning (i.e., soil water evaporation and plant transpiration), considering three different resistance models using ground-based information and aerial high-resolution imagery from the Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). We developed a new method for temperature partitioning that incorporated a quantile technique separation (QTS) and high-resolution sUAS information. This new method, coupled with the TSEB model (called TSEB-2TQ), improved sensible heat flux (H) estimation, regarding the bias, with around 61% and 35% compared with the H from the TSEB-PT and TSEB-2T, respectively. Comparisons among ET partitioning estimates from three different methods (Modified Relaxed Eddy Accumulation—MREA; Flux Variance Similarity—FVS; and Conditional Eddy Covariance—CEC) based on EC flux tower data show that the transpiration estimates obtained from the FVS method are statistically different from the estimates from the MREA and the CEC methods, but the transpiration from the MREA and CEC methods are statistically the same. By using the transpiration from the CEC method to compare with the transpiration modeled by different TSEB models, the TSEB-2TQ shows better agreement with the transpiration obtained via the CEC method. Additionally, the transpiration estimation from TSEB-2TQ coupled with different resistance models resulted in insignificant differences. This comparison is one of the first for evaluating ET partitioning estimation from sUAS imagery based on eddy covariance-based partitioning methods.
Accurate and frequent monitoring of evapotranspiration (ET) at sub-field scales can provide valuable information for agricultural water management, quantifying crop water use and stress toward the goal of increasing crop water use efficiency and production. Using land-surface temperature (LST) data retrieved from Landsat thermal infrared (TIR) imagery, along with surface reflectance data describing albedo and vegetation cover fraction, surface energy balance models can generate ET maps down to a 30 m spatial resolution. However, the temporal sampling by such maps can be limited by the relatively infrequent revisit period of Landsat data (8 days for combined Landsats 7 and 8), especially in cloudy areas experiencing rapid changes in moisture status. The Sentinel-2 (S2) satellites, as a good complement to the Landsat system, provide surface reflectance data at 10–20 m spatial resolution and 5 day revisit period but do not have a thermal sensor. On the other hand, the Visible Infrared Imaging Radiometer Suite (VIIRS) provides TIR data on a near-daily basis with 375 m resolution, which can be refined through thermal sharpening using S2 reflectances. This study assesses the utility of augmenting the Harmonized Landsat and Sentinel-2 (HLS) dataset with S2-sharpened VIIRS as a thermal proxy source on S2 overpass days, enabling 30 m ET mapping at a potential combined frequency of 2–3 days (including Landsat). The value added by including VIIRS-S2 is assessed both retrospectively and operationally in comparison with flux tower observations collected from several U.S. agricultural sites covering a range of crop types. In particular, we evaluate the performance of VIIRS-S2 ET estimates as a function of VIIRS view angle and cloud masking approach. VIIRS-S2 ET retrievals (MAE of 0.49 mm d−1 against observations) generally show comparable accuracy to Landsat ET (0.45 mm d−1) on days of commensurate overpass, but with decreasing performance at large VIIRS view angles. Low-quality VIIRS-S2 ET retrievals linked to imperfect VIIRS/S2 cloud masking are also discussed, and caution is required when applying such data for generating ET timeseries. Fused daily ET time series benefited during the peak growing season from the improved multi-source temporal sampling afforded by VIIRS-S2, particularly in cloudy regions and over surfaces with rapidly changing vegetation conditions, and value added for real-time monitoring applications is discussed. This work demonstrates the utility and feasibility of augmenting the HLS dataset with sharpened VIIRS TIR imagery on S2 overpass dates for generating high spatiotemporal resolution ET products.
Thermal infrared (TIR) remote sensing of the land-surface temperature (LST) provides an invaluable diagnostic of surface fluxes and vegetation state, from plant and sub-field scales up to regional and global coverage. However, without proper consideration of the nuances of the remotely sensed LST signal, TIR imaging can give poor results for estimating sensible and latent heating. For example, sensor view angle, atmospheric impacts, and differential coupling of soil and canopy sub-pixel elements with the overlying atmosphere can affect the use of satellite-based LST retrievals in land-surface modeling systems. A concerted effort to address the value and perceived shortcomings of TIR-based modeling culminated in the Workshop on Thermal Remote Sensing of the Energy and Water Balance, held in La Londe les Maures, France in September of 1993. One of the outcomes of this workshop was the Two-Source Energy Balance (TSEB) model, which has fueled research and applications over a range of spatial scales. In this paper we provide some historical context for the development of TSEB and TSEB-based multi-scale modeling systems (ALEXI/DisALEXI) aimed at providing physically based, diagnostic estimates of latent heating (evapotranspiration, or ET, in mass units) and other surface energy fluxes. Applications for TSEB-based ET retrievals are discussed: in drought monitoring and yield estimation, water and forest management, and data assimilation into – and assessment of – prognostic modeling systems. New research focuses on augmenting temporal sampling afforded in the thermal bands by integrating cloud-tolerant, microwave-based LST information, as well as evaluating the capabilities of TSEB for separating ET estimates into evaporation and transpiration components. While the TSEB has demonstrated promise in supplying water use and water stress information down to sub-field scales, improved operational capabilities may be best realized in conjunction with ensemble modeling systems such as OpenET, which can effectively combine strengths of multiple ET retrieval approaches.
Land surface albedo is a critical variable in determining surface energy balance, and regulating climate and ecosystem processes through feedback mechanisms. Therefore, climatic modelers and radiative monitoring require accurate estimates of land surface albedo. With the instrument development, algorithm upgrade, spectral-band-adjustment in wavelength center or band width, and the increasing distinct requirement from diversified communities, various albedo terms have been generated in related satellite-based products. The lack of understanding on the divergence of these terminologies can introduce potential considerable errors in the subsequent applications, or an elevated probability to invert the deduced conclusion. We surveyed the basic concepts of reflectance quantities, retrieval strategies, and models developed since the 1970s, and discuss both strength and opportunity for improvements on land surface albedo extraction, and product generation. In addition, we exemplified the difference of albedo terms using the daily MODIS product (MCD43A) to emphasize the potential risk of the ambiguous usage, over typical IGBP land covers in Northern Kazakhstan. Our investigation shows that relative differences among various albedo terms can reach up to 181% and 50%, while 0.266 and 0.118 of absolute variance respectively in the narrow and broad-band surface albedo, which illuminated cautions against the ambiguous understanding of albedo terminologies or erroneous usage of albedo products.