Abstract. Precipitation data with high resolution and high accuracy are significantly important in numerous hydrological applications. To enhance the spatial resolution and accuracy of satellite-based precipitation products, an easy-to-use downscaling-calibration method based on a spatial random forest (SRF-DC) is proposed in this study, where the spatial autocorrelation of precipitation measurements between neighboring locations is considered. SRF-DC consists of two main stages. First, the satellite-based precipitation is downscaled by the SRF with the incorporation of high-resolution variables including latitude, longitude, normalized difference vegetation index (NDVI), digital elevation model (DEM), terrain slope, aspect, relief and land surface temperatures. Then, the downscaled precipitation is calibrated by the SRF with rain gauge observations and the aforementioned high-resolution variables. The monthly Integrated MultisatellitE Retrievals for Global Precipitation Measurement (IMERG) over Sichuan Province, China, from 2015 to 2019 was processed using SRF-DC, and its results were compared with those of classical methods including geographically weighted regression (GWR), artificial neural network (ANN), random forest (RF), kriging interpolation only on gauge measurements, bilinear interpolation-based downscaling and then SRF-based calibration (Bi-SRF), and SRF-based downscaling and then geographical difference analysis (GDA)-based calibration (SRF-GDA). Comparative analyses with respect to root mean square error (RMSE), mean absolute error (MAE) and correlation coefficient (CC) demonstrate that (1) SRF-DC outperforms the classical methods as well as the original IMERG; (2) the monthly based SRF estimation is slightly more accurate than the annually based SRF fraction disaggregation method; (3) SRF-based downscaling and calibration perform better than bilinear downscaling (Bi-SRF) and GDA-based calibration (SRF-GDA); (4) kriging is more accurate than GWR and ANN, whereas its precipitation map loses detailed spatial precipitation patterns; and (5) based on the variable-importance rank of the RF, the precipitation interpolated by kriging on the rain gauge measurements is the most important variable, indicating the significance of incorporating spatial autocorrelation for precipitation estimation.
Global navigation satellite system (GNSS) positions include various useful signals and some unmodeled errors. In order to enhance the accuracy and extract the features of the GNSS daily time sequence, an improved method of complete ensemble empirical mode decomposition (CEEMD) and multi-PCA (MPCA) based on correlation coefficients and block spatial filtering was proposed. The results showed that the mean standard deviations of the raw residual time sequence were 1.09, 1.20 and 4.79 mm, while those of the newly proposed method were 0.15, 0.20 and 2.86 mm in north, east and up directions, respectively. The proposed method outperforms wavelet decomposition (WD)-PCA and empirical mode decomposition (EMD)-PCA in effectively eliminating low- and high-frequency noise, and is suitable for denoising nonlinear and nonstationary GNSS position sequences. Furthermore, feature extraction of the denoised GNSS daily time series was based on CEEMD, which is superior to WD and EMD. Results of noise analysis suggested that the noise components in the original and denoised GNSS time sequence are complex. The advantages of the proposed method are the following: (i) it fully exploits the merits of CEEMD and WD, where CEEMD is first used to obtain the limited intrinsic modal functions (IMFs) and then to extract seasonal and trend features; (ii) it has good adaptive processing ability via WD for noise-dominant IMFs; and (iii) it fully considers the correlation between the different components of each station and the non-uniform behavior of common mode error on a spatial scale.
A fast and robust interpolation filter based on finite difference TPS has been proposed in this paper. The proposed method employs discrete cosine transform to efficiently solve the linear system of TPS equations in case of gridded data, and by a pre-defined weight function with respect to simulation residuals to reduce the effect of outliers and misclassified non-ground points on the accuracy of reference ground surface construction. Fifteen groups of benchmark datasets, provided by the International Society for Photogrammetry and Remote Sensing (ISPRS) commission, were employed to compare the performance of the proposed method with that of the multi-resolution hierarchical classification method (MHC). Results indicate that with respect to kappa coefficient and total error, the proposed method is averagely more accurate than MHC. Specifically, the proposed method is 1.03 and 1.32 times as accurate as MHC in terms of kappa coefficient and total errors. More importantly, the proposed method is averagely more than 8 times faster than MHC. In comparison with some recently developed methods, the proposed algorithm also achieves a good performance.
Abstract. Precipitation data with high resolution and high accuracy are significantly important in numerous hydrological applications. To enhance the spatial resolution and accuracy of satellite-based precipitation products, an easy-to-use downscaling-calibration method based on a spatial random forest (SRF-DC) is proposed in this study, where the spatial autocorrelation of precipitation measurements between neighboring locations is considered. SRF-DC consists of two main stages. First, the satellite-based precipitation is downscaled by the SRF with the incorporation of high-resolution variables including latitude, longitude, normalized difference vegetation index (NDVI), digital elevation model (DEM), terrain slope, aspect, relief and land surface temperatures. Then, the downscaled precipitation is calibrated by the SRF with rain gauge observations and the aforementioned high-resolution variables. The monthly Integrated MultisatellitE Retrievals for Global Precipitation Measurement (IMERG) over Sichuan Province, China, from 2015 to 2019 was processed using SRF-DC, and its results were compared with those of classical methods including geographically weighted regression (GWR), artificial neural network (ANN), random forest (RF), kriging interpolation only on gauge measurements, bilinear interpolation-based downscaling and then SRF-based calibration (Bi-SRF), and SRF-based downscaling and then geographical difference analysis (GDA)-based calibration (SRF-GDA). Comparative analyses with respect to root mean square error (RMSE), mean absolute error (MAE) and correlation coefficient (CC) demonstrate that (1) SRF-DC outperforms the classical methods as well as the original IMERG; (2) the monthly based SRF estimation is slightly more accurate than the annually based SRF fraction disaggregation method; (3) SRF-based downscaling and calibration perform better than bilinear downscaling (Bi-SRF) and GDA-based calibration (SRF-GDA); (4) kriging is more accurate than GWR and ANN, whereas its precipitation map loses detailed spatial precipitation patterns; and (5) based on the variable-importance rank of the RF, the precipitation interpolated by kriging on the rain gauge measurements is the most important variable, indicating the significance of incorporating spatial autocorrelation for precipitation estimation.
To remove vegetation bias (VB) from the global DEMs (GDEMs), an artificial neural network (ANN)-based method with the consideration of elevation spatial autocorrelation is developed in this paper. Three study sites with different forest types (evergreen, mixed evergreen-deciduous, and deciduous) are employed to evaluate the performance of the proposed model on three popular 30-m GDEMs, including SRTM1, AW3D30, and COPDEM30. Taking LiDAR DTM as the ground truth, the accuracy of the GDEMs before and after VB correction is assessed, as well as two existing GDEMs including MERIT and FABDEM. Results show that all the original GDEMs significantly overestimate the LiDAR DTM in the three forest types, with the largest biases of 21.5 m for SRTM1, 26.3 m for AW3D30, and 27.18 m for COPDEM30. Taking data randomly sampled from the corrected area as the training points, the proposed model reduces the mean errors (root mean square errors) of the three GDEMs by 98.8%−99.9% (55.1%−75.8%) in the three forests. When training data have the same forest type as the corrected GDEM but under different local situations, the proposed model lowers the GDEM errors by at least 76.9% (44.1%). Furthermore, our corrected GDEMs consistently outperform the existing GDEMs for the two cases.