Abstract Titanium implants are widely used clinically, but postoperative implant infection remains a potential severe complication. The purpose of this study was to investigate the antibacterial activity of nano-silver(Ag)-functionalized Ti surfaces against epidemic Staphylococcus from the perspective of the regulation of biofilm-related genes and based on a bacteria-cell co-culture study. To achieve this goal, two representative epidemic Staphylococcus strains, Staphylococcus epidermidis ( S. epidermidis , RP62A) and Staphylococcus aureus ( S. aureus , USA 300), were used, and it was found that an Ag-nanoparticle-modified Ti surface could regulate the expression levels of biofilm-related genes ( ica A and ica R for S. epidermidis ; fnb A and fnb B for S. aureus ) to inhibit bacterial adhesion and biofilm formation. Moreover, a novel bacteria-fibroblast co-culture study revealed that the incorporation of Ag nanoparticles on such a surface can help mammalian cells to survive, adhere and spread more successfully than Staphylococcus . Therefore, the modified surface was demonstrated to possess a good anti-infective capability against both sessile bacteria and planktonic bacteria through synergy between the effects of Ag nanoparticles and ion release. This work provides new insight into the antimicrobial action and mechanism of Ag-nanoparticle-functionalized Ti surfaces with bacteria-killing and cell-assisting capabilities and paves the way towards better satisfying the clinical needs.
Abstract Bi 1.4 Er 0.6 O 3 ‐(La 0.74 Bi 0.10 Sr 0.16 )MnO 3‐δ (ESB‐LBSM) composite cathodes were fabricated by impregnating the ionic conducting ESB matrix with the LBSM electronic conducting materials. The ion‐impregnated ESB‐LBSM cathodes were beneficial for the O 2 reduction reactions, and the performance of these cathodes was investigated at temperatures below 700 °C by AC impedance spectroscopy and the results indicated that the ion‐impregnated ESB‐LBSM system had an excellent performance. At 700 °C, the lowest cathode polarisation resistance ( R p ) was only 0.07 Ω cm 2 for the ion‐impregnated ESB‐LBSM system. For the performance testing of single cells, the maximum power density was 1.0 W cm –2 at 700 °C for a cell with the ESB‐LBSM cathode. The results demonstrated that the unique combination of the ESB ionic conducting matrix with electronic conducting LBSM materials was a valid method to improve the cathode performance, and the ion‐impregnated ESB‐LBSM was a promising composite cathode material for the intermediate‐temperature solid oxide fuel cells.
Graphene has attracted increasing attention for potential applications in biotechnology due to its excellent electronic property and biocompatibility. Here we use both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) to investigate the antibacterial actions of large-area monolayer graphene film on conductor Cu, semiconductor Ge and insulator SiO2. The results show that the graphene films on Cu and Ge can surprisingly inhibit the growth of both bacteria, especially the former. However, the proliferation of both bacteria cannot be significantly restricted by the graphene film on SiO2. The morphology of S. aureus and E. coli on graphene films further confirms that the direct contact of both bacteria with graphene on Cu and Ge can cause membrane damage and destroy membrane integrity, while no evident membrane destruction is induced by graphene on SiO2. From the viewpoint of charge transfer, a plausible mechanism is proposed here to explain this phenomenon. This study may provide new insights for the better understanding of antibacterial actions of graphene film and for the better designing of graphene-based antibiotics or other biomedical applications.
Abstract Germanium (Ge), as an elemental semiconductor material, has been an attractive candidate for manufacturing semiconductor microelectronic device. In the present investigation, to improve the biocompatibility of Ge-based device, graphene film is directly deposited on the Ge surface with different coverage area by controlling the growth time. Compared to bare Ge, the presence of graphene film entitles Ge with satisfactory antibacterial ability against Staphylococcus aureus (S.aureus ), and acceptable antibacterial ability against Escherichia coli (E. coli ). Meanwhile, antibacterial efficiency closely correlates with coverage area of graphene film, and larger graphene coverage always leads to better antibacterial performance. The underlying mechanism is thought to be the integrative action of phospholipids disturbance and electron extraction at the interface between graphene and biomembrane. Meanwhile, the electron extraction action would further lead to the activation of platelet. This study might provide some new insights into the relationship between antibacterial ability and hemocompatibility based on graphene functionalized biomedical device.
Abstract The high‐temperature solid oxide electrolysis cell (SOEC) is one of the most promising devices for hydrogen mass production. To make SOEC suitable from an economical point of view, each component of the SOEC has to be optimized. At this level, the optimization of the oxygen electrode is of particular interest since it contributes to a large extent to the cell polarization resistance. The present paper is focused on an alternative oxygen electrode of Zr 0.84 Y 0.16 O 2– δ ‐Sr 2 Fe 1.5 Mo 0.5 O 6– δ (YSZ‐SFM). YSZ‐SFM composite oxygen electrodes were fabricated by impregnating the YSZ matrix with SFM, and the ion‐impregnated YSZ‐SFM composite oxygen electrodes showed excellent performance. For a voltage of 1.2 V, the electrolysis current was 223 mA cm −2 , 327 mA cm −2 and 310 mA cm −2 at 750 °C for the YSZ‐SFM10, YSZ‐SFM20, and YSZ‐SFM30 oxygen electrode, respectively. A hydrogen production rate as high as 11.46 NL h −1 has been achieved for the SOEC with the YSZ‐SFM20 electrode at 750 °C. The results demonstrate that YSZ‐SFM fabricated by impregnating the YSZ matrix with SFM is a promising composite electrode for the SOEC.
Theoretical definitions of dominance, how dominance is structured and organized in nature, and how dominance is measured have varied as investigators seek to classify and organize social systems in gregarious species. Given the variability in behavioral measures and statistical methods used to derive dominance rankings, we conducted a comparative analysis of dominance using existing statistical techniques to analyze dominance ranks, social context-dependent dominance structures, the reliability of statistical analyses, and rank predictability of dominance structures on other social behaviors. We investigated these topics using behavioral data from captive chimpanzees (Pan troglodytes) and wild Tibetan macaques (Macaca thibetana). We used a combination of all-occurrence, focal-animal, and instantaneous scan sampling to collect social, agonistic, and associative data from both species. We analyzed our data to derive dominance ranks, test rank reliability, and assess cross-context predictability using various statistical analyses. Our results indicate context-dependent dominance and individual social roles in the captive chimpanzee group, one broadly defined dominance structure in the Tibetan macaque group, and high within-context analysis reliability but little cross-context predictability. Overall, we suggest this approach is preferable over investigations of dominance where only a few behavioral metrics and statistical analyses are utilized with little consideration of rank reliability or cross-context predictability.
Summary There are two genetically distinct morphological types of multicellular magnetotactic prokaryotes (MMPs) in the intertidal zone of Lake Yuehu (China): ellipsoidal MMPs (eMMPs) and spherical MMPs (sMMPs). We studied the vertical distribution of both types of MMPs in the sediment at Lake Yuehu during 1 year. Both types of MMPs were observed at sediment depths ranging from 1 to 34 cm, depending on the seasons. The eMMPs distributed at depths of 2–34 cm during spring, 1–11 cm during summer, 2–21 cm during autumn and 9–32 cm during winter. The eMMP species Candidatus Magnetananas rongchenensis, with magnetite magnetosomes, dominated at all distribution depths. These results suggested that Ca . M. rongchenensis migrated vertically during four seasons. The vertical profiles of oxidation‐reduction potential (ORP) in Lake Yuehu changed seasonally, and these changes coincided with the seasonal distribution of MMPs, suggesting that the ORP affected the vertical distribution of MMPs. In addition, high concentrations of ammonium and silicate were associated with low abundances of MMPs.