Based on the analysis of wind,ocean currents,sea surface temperature(SST) and remote sensing satellite altimeter data,the characteristics and possible causes of sea level anomalies in the Xisha sea area are investigated.The main results are shown as follows:(1) Since 1993,the sea level in the Xisha sea area was obviously higher than normal in 1998,2001,2008,2010 and 2013.Especially,the sea level in 1998 and 2010 was abnormally high,and the sea level in 2010 was 13.2 cm higher than the muti-year mean,which was the highest in the history.In 2010,the sea level in the Xisha sea area had risen 43 cm from June to August,with the strength twice the annual variation range.(2) The sea level in the Xisha sea area was not only affected by the tidal force of the celestial bodies,but also closely related to the quasi 2 a periodic oscillation of tropical western Pacific monsoon and ENSO events.(3)There was a significant negative correlation between sea level in the Xisha sea area and ENSO events.The high sea level anomaly all happened during the developing phase of La Ni?a.They also show significant negative correlations with Ni?o 4 and Ni?o 3.4 indices,and the lag correlation coefficients for 2 months and 3 months are–0.46 and –0.45,respectively.(4) During the early La Ni?a event form June to November in 2010,the anomalous wind field was cyclonic.A strong clockwise vortex was formed for the current in 25 m layer in the Xisha sea area,and the velocity of the current is close to the speed of the Kuroshio near the Luzon Strait.In normal years,there is a 'cool eddy'.While in 2010,from July to August,the SST in the area was 2–3°C higher than that of the same period in the history.
Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific and the SSTA in the EEP is examined by different methods,including band-pass filtering,period analysis,correlation analysis,significant analysis,and empirical orthogonal function(EOF) analysis.We have found that the eastward shift of the wave transport anomaly in the tropical Pacific,with a period of 2 a and enhancing the transport of warm waters from the western Pacific warm pool,precedes the increase of sea surface temperature(SST) in the EEP.The wave transport and the SSTA in the EEP have a maximum correlation of 0.65 with a time-lag of 6 months(transport variation precedes the temperature).The major periods(3.7 a and 2.45 a) of the wave transport variability,as revealed by the EOF analysis,appear to be consistent with the SSTA oscillation cycle in the EEP.Based on the first occurrence of a significant SSTA in the Ni?o 3 region(5°S–5°N,90°–150°W),two types of warm events are defined.The wave transport anomalies in two types present predominantly the west anomaly in the tropical Pacific,it is that the wave transport continues transport warm water from west to east before the onset of the warm event.The impact of wave-induced water transport on the SSTA in the EEP is confirmed by the heat flux of the wave transport.The wave transport exerts significant effect on the SSTA variability in the EEP and thus is not neglectable in the further studies.
越过由空至海的接口的 CO2 煤气的转移的精确大小提供全球碳周期的更好的理解。由空至海的 CO2 流动被旋涡协变性方法和体积方法在北 Huanghai 海从浮标观察获得。旋涡协变性方法计算的流动上的浮标运动的效果被表明。研究证明运动修正能改进在从二个不同层次估计的 CO2 流动之间的关联系数。没有作为 PKT 修正被称为的 CO2-H2O 跨关联的修正,由空至海的 CO2 流动用改正的运动由旋涡协变性方法估计数据比体积方法估计的那些大将近一个数量级。在 CO2-H2O 跨关联的修正以后,一些旋涡协变性 CO2 流动确实离体积 CO2 流动变得更靠近,而一些是响应小水蒸汽流动的 overcorrected。