We present a possible orbit for the Southern Stream of stars in M31, which connects it to the Northern Spur. Support for this model comes from the dynamics of planetary nebulae (PNe) in the disk of M31: analysis of a new sample of 2611 PNe obtained using the Planetary Nebula Spectrograph reveals ~20 objects whose kinematics are inconsistent with the normal components of the galaxy, but which lie at the right positions and velocities to connect the two photometric features via this orbit. The satellite galaxy M32 is coincident with the stream both in position and velocity, adding weight to the hypothesis that the stream comprises its tidal debris.
We present the detection of nuclear stellar discs in the low-luminosity elliptical galaxies NGC 4458 and NGC 4478, which are known to host a kinematically-decoupled core. Using archival HST imaging, and available absorption line-strength index data based on ground-based spectroscopy, we investigate the photometric parameters and the properties of the stellar populations of these central structures. Their scale length, h, and face-on central surface brightness, mu_0^c, fit on mu_0^c-h relation for galaxy discs. For NGC 4458 these parameters are typical for nuclear discs, while the same quantities for NGC 4478 lie between those of nuclear discs and the discs of discy ellipticals. We present Lick/IDS absorption line-strength measurements of Hbeta, Mgb, along the major and minor axes of the galaxies. We model these data with simple stellar populations that account for the alpha/Fe overabundance. The counter-rotating central disc of NGC 4458 is found to have similar properties to the decoupled cores of bright ellipticals. This galaxy has been found to be uniformly old despite being counter-rotating. In contrast, the cold central disc of NGC 4478 is younger, richer in metals and less overabundant than the main body of the galaxy. This points to a prolonged star formation history, typical of an undisturbed disc-like, gas-rich (possibly pre-enriched) structure.
We measure the spatial clustering of galaxies as a function of their morphological type at z≃ 0.8, for the first time in a deep redshift survey with full morphological information. This is obtained by combining high-resolution Hubble Space Telescope imaging and Very Large Telescope spectroscopy for about 8500 galaxies to with accurate spectroscopic redshifts from the zCOSMOS-Bright redshift survey. At this epoch, early-type galaxies already show a significantly stronger clustering than late-type galaxies on all probed scales. A comparison to the Sloan Digital Sky Survey Data at z≃ 0.1 shows that the relative clustering strength between early and late morphological classes tends to increase with cosmic time at small separations, while on large scales it shows no significant evolution since z≃ 0.8. This suggests that most early-type galaxies had already formed in intermediate and dense environments at this epoch. Our results are consistent with a picture in which the relative clustering of different morphological types between z≃ 1 and 0 reflects the evolving role of environment in the morphological transformation of galaxies, on top of a global evolution driven by mass.
The shape of the line-of-sight velocity distribution (LOSVD) is measured for a sample of 14 elliptical galaxies, predominantly low-luminosity ellipticals. The sample is dominated by galaxies in the Virgo cluster but also contains ellipticals in nearby groups and low-density environments. The parametrization of the LOSVD given by Gerhard and van der Marel & Franx is adopted, which measures the asymmetrical and symmetrical deviations of the LOSVD from a Gaussian by the amplitudes h3 and h4 of the Gauss—Hermite series. Rotation, velocity dispersion, h3 and h4 are determined as a function of radius for both major and minor axes. Non-Gaussian LOSVDs are found for all galaxies along the major axes. Deviations from a Gaussian LOSVD along the minor axis are of much lower amplitude if present at all. Central decreases in velocity dispersion are found for three galaxies. Two galaxies have kinematically decoupled cores: NGC 4458 and the well-known case of NGC 3608.
We present XMM–Newton observations of three optically selected z > 0.6 clusters from the European Southern Observatory (ESO) Distant Cluster Survey (EDisCS), comprising the first results of a planned X-ray survey of the full EDisCS high-redshift sample. The EDisCS clusters were identified in the Las Campanas Distant Cluster Survey as surface brightness fluctuations in the optical sky and their masses and galaxy populations are well described by extensive photometric and spectroscopic observations. We detect two of the three clusters in the X-ray and place a firm upper limit on diffuse emission in the third cluster field. We are able to constrain the X-ray luminosity and temperature of the detected clusters and estimate their masses. We find that the X-ray properties of the detected EDisCS clusters are similar to those of X-ray-selected clusters of comparable mass and – unlike other high-redshift, optically selected clusters – are consistent with the T–σ and LX–σ relations determined from X-ray-selected clusters at low redshift. The X-ray determined mass estimates are generally consistent with those derived from weak-lensing and spectroscopic analyses. These preliminary results suggest that the novel method of optical selection used to construct the EDisCS catalogue may, like selection by X-ray luminosity, be well suited for identification of relaxed, high-redshift clusters whose intracluster medium is in place and stable by z∼ 0.8.
We present radial velocities for a sample of 723 planetary nebulae (PNe) in the disk and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel telescope. Velocities are determined using the [OIII] 5007 Angstrom emission line. Rotation and velocity dispersion are measured to a radius of 50 arcminutes (11.5 kpc), the first stellar rotation curve and velocity dispersion profile for M31 to such a radius. Our kinematics are consistent with rotational support at radii well beyond the bulge effective radius of 1.4kpc, although our data beyond a radius of 5kpc are limited. We present tentative evidence for kinematic substructure in the bulge of M31 to be studied fully in a later work. This paper is part of an ongoing project to constrain the total mass, mass distribution and velocity anisotropy of the disk, bulge and halo of M31.
Abstract We present a catalogue of positions, magnitudes and velocities for 3300 emission-line objects found by the Planetary Nebula Spectrograph in a survey of the Andromeda galaxy, M31. Of these objects, 2615 are found likely to be planetary nebulae (PNe) associated with M31. The survey area covers the whole of M31's disc out to a radius of . Beyond this radius, observations have been made along the major and minor axes, and the Northern Spur and Southern Stream regions. The calibrated data have been checked for internal consistency and compared with other catalogues. With the exception of the very central, high surface brightness region of M31, this survey is complete to a magnitude limit of m5007∼ 23.75, 3.5 mag into the PN luminosity function. We have identified emission-line objects associated with M31's satellites and other background galaxies. We have examined the data from the region tentatively identified as a new satellite galaxy, Andromeda VIII, comparing it to data in the other quadrants of the galaxy. We find that the PNe in this region have velocities that appear to be consistent with membership of M31 itself. The luminosity function of the surveyed PNe is well matched to the usual smooth monotonic function. The only significant spatial variation in the luminosity function occurs in the vicinity of M31's molecular ring, where the luminosities of PNe on the near side of the galaxy are systematically ∼0.2 mag fainter than those on the far side. This difference can be explained naturally by a modest amount of obscuration by the ring. The absence of any difference in luminosity function between bulge and disc suggests that the sample of PNe is not strongly populated by objects whose progenitors are more massive stars. This conclusion is reinforced by the excellent agreement between the number counts of PNe and the R-band light. The number counts of kinematically selected PNe also allow us to probe the stellar distribution in M31 down to very faint limits. There is no indication of a cut-off in M31's disc out to beyond four scalelengths, and no signs of a spheroidal halo population in excess of the bulge out to 10 effective bulge radii. We have also carried out a preliminary analysis of the kinematics of the surveyed PNe. The mean streaming velocity of the M31 disc PNe is found to show a significant asymmetric drift out to large radii. Their velocity dispersion, although initially declining with radius, flattens out to a constant value in the outer parts of the galaxy. There are no indications that the disc velocity dispersion varies with PN luminosity, once again implying that the progenitors of PNe of all magnitudes form a relatively homogeneous old population. The dispersion profile and asymmetric drift results are shown to be mutually consistent, but require that the disc flares with radius if the shape of its velocity ellipsoid remains invariant.