Abstract The paper investigates trace elements and crystal-rich fluid inclusions in spodumene from rare-metal pegmatites of the Kolmozero lithium deposit in the Kola region, Russia. The main lithium mineral in the pegmatites is spodumene, which occurs in three generations, designated as Spd-I, Spd-II and Spd-III. Iron, Na and Mn are the most typical element impurities in spodumene. The Fe/Mn ratio is 7.1 in Spd-I, 12.3 in Spd-II and 13.2 in Spd-III. Spd-II contains fluid and crystal-rich fluid inclusions. The crystal-rich fluid inclusions in Spd-II originally trapped CO 2 -bearing aqueous fluids with dissolved alkali carbonates. The crystal-rich fluid inclusions contain zabuyelite (Li 2 CO 3 ) and cristobalite (SiO 2 ) as solid phases, which have not been reported previously from the Kolmozero rare-metal pegmatites. These minerals are assumed to have resulted from a reaction between a CO 2 -bearing aqueous fluid and host Spd-II and are not related to the mineral-forming system of pegmatites.
This study utilizes LA-ICP-MS-determined minor and trace element contents of megacrystic blocky K-feldspar to reveal the chemical variability and fractionation degree of albite-spodumene and barren feldspar pegmatites of the Kolmozero lithium deposit in the Kola region, Russia. K-feldspar from albite-spodumene pegmatite is represented by two generations: early microcline-I and late microcline-II. Rb, Cs, Li, and Tl are the most typical impurity elements in K-feldspar that replace K in its crystal lattice. Microcline-II differs from microcline-I: (i) relatively high contents of Rb (6520 and 4490 ppm, respectively), Cs (146 and 91 ppm), and Li (86 and 68 ppm), Tl (34 and 28 ppm); and (ii) low contents of Ba (13 and 29 ppm), Sr (8 and 24 ppm), and Pb (14 and 26 ppm). K-feldspar from feldspar pegmatites of the Kolmozero pegmatite field differs from those in the Kolmozero Li deposit in (i) low contents of Rb, Cs, Li, Tl, and an orthoclase component; and (ii) high contents of Sr, Ba, Pb, and an albite component. K/Sr, K/Ba, Rb/Ba, and Rb/Sr element ratios increase, while K/Rb, K/Cs, K/Tl, and K/Li element ratios decrease in K-feldspar, from feldspar pegmatites to albite-spodumene pegmatites. These trends reflect different fractionation degrees of pegmatite evolution. The implications of the detected trace element variations in K-feldspar are discussed in respect of tracing the rare element enrichments in pegmatite systems. A model is proposed for the formation of the Kolmozero pegmatites by differentiation from a hypothetical parental granite, rather than by anatexis of the host rock.