Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.
Abstract This study examines the influence of particle‐size distributions on the rheology of particle suspensions by using analog experiments with spherical glass beads in silicone oil as a magma equivalent. The analyses of 274 individual particle‐bearing suspensions of varying modality (unimodality, bimodality, trimodality, and tetramodality), as well as of polymodal suspensions with specific defined skewness and variance, are the first data set of its kind and provide important insights into the relationship between the solid particles of a suspension and its rheological behavior. Since the relationship between the rheology of particle‐bearing suspensions and its maximum packing fraction is well established by several theoretical models, the results of the analog experiments of this study reveal that the polydispersity γ exerts the largest influence on . Consequently, the estimation of the polydispersity γ of a particle‐size distribution is essential for estimating the viscosity of that given suspension.
Abstract Magma reservoirs underneath volcanoes grow through episodic emplacement of magma batches. These pulsed magma injections can substantially alter the physical state of the resident magma by changing its temperature, pressure, composition, and volatile content. Here we examine plagioclase phenocrysts in pumice from the 2014 Plinian eruption of Kelud (Indonesia) that record the progressive capture of small melt inclusions within concentric growth zones during crystallization inside a magma reservoir. High-spatial-resolution Raman spectroscopic measurements reveal the concentration of dissolved H2O within the melt inclusions, and provide insights into melt-volatile behavior at the single crystal scale. H2O contents within melt inclusions range from ∼0.45 to 2.27 wt% and do not correlate with melt inclusion size or distance from the crystal rim, suggesting that minimal H2O was lost via diffusion. Instead, inclusion H2O contents vary systematically with anorthite content of the host plagioclase (R2 = 0.51), whereby high anorthite content zones are associated with low H2O contents and vice versa. This relationship suggests that injections of hot and H2O-poor magma can increase the reservoir temperature, leading to the dilution of melt H2O contents. In addition to recording hot and H2O-poor conditions after these injections, plagioclase crystals also record relatively cold and H2O-rich conditions such as prior to the explosive 2014 eruption. In this case, the elevated H2O content and increased viscosity may have contributed to the high explosivity of the eruption. The point at which an eruption occurs within such repeating hot and cool cycles may therefore have important implications for explaining alternating eruptive styles.
Abstract Predicting explosive eruptions remains an outstanding challenge. Knowledge of the controlling parameters and their relative importance is crucial to deepen our understanding of conduit flow dynamics and accurately model the processes involved. This experimental study sheds light on one important parameter—outgassing—and evaluates its influence on magma fragmentation behavior. We perform fragmentation experiments based on the shock tube theory at room temperature on natural pyroclastic material with a connected porosity ranging from 15% to 78%. For each sample series, we determine the initial pressure ( P ) required to initiate magma fragmentation (fragmentation threshold, P th ). Furthermore, we measure the permeability of each sample for P < P th and the fragmentation speed for P > P th . A significant loss of initial pressure, caused by outgassing in samples with permeability ≥1e–12 m 2 , is observed within the fragmentation time scale (a few milliseconds). The samples are classified into: (a) dome/conduit wall rocks and (b) pumice/scoria. Substantial outgassing during fragmentation leads to higher fragmentation thresholds. Experimental fragmentation speeds are significantly higher than the modeled fragmentation speeds for high‐permeability dome/conduit wall rocks, but lower for high‐permeability pumices. Experimental fragmentation speeds for low‐permeability dome/conduit wall rocks and low‐permeability pumice/scoria are as expected. We also find that low‐porosity, low‐permeability, altered dome/conduit wall rocks fragment at significantly higher speeds than expected. Because fragmentation threshold and fragmentation speed are among the determining parameters for the initiation, sustainment and cessation of an eruption, outgassing should be considered in the modeling of magma fragmentation dynamics.