Background Breast cancer (BCa) is a leading cause of mortality among women in Bangladesh. Many young women in Bangladesh have poor knowledge about breast cancer screening, including risk factors, warning signs/symptoms, diagnosis and early detection. We investigated awareness about breast cancer risk factors as a screening tool among women at the Sheikh Hasina Medical College (SHMC) of Tangail district in Bangladesh. Methods A cross sectional survey was conducted to collect data via a structured questionnaire from SHMC during the period of February to December 2019. A total of 1,007 participants (aged 33.47 (±12.37 years)) was considered for data analysis. Results Of the 1,007 women, about 50% were knowledgeable about the risk factors. Pain in the breast was identified as the most commonly warning sign/symptom of breast cancer. Only 32.2% of respondents knew at least one breast cancer screening method. The mean knowledge was scored 3.43 ± 2.25 out of a total possible score of 8. Awareness of BCa was associated with residence, family history of breast cancer, marital, literacy and socio-economic status ( p <0.05). Only 14.7% of women who knew about BSE said they were conducting regular breast self-examination. Unmarried women (aOR: 2.971; 95% CI: 1.108–7.968) were more likely to have performed BSE compared to married women ( p <0.05). Conclusion Although most participants were aware of breast cancer; knowledge about risk factors, warning signs/symptoms, early diagnosis and detection was relatively poor. Knowledge about performing BSE was particularly low. This highlights the importance of increasing awareness about breast cancer risk factors and early detection among young women in Bangladesh.
Abstract Decarbonizing the electricity sector requires massive investments in generation and transmission infrastructures that may impact both water and land resources. Characterizing these effects is key to ensure a sustainable energy transition. Here, we identify and quantify the unintended consequences of decarbonizing the China Southern Power Grid, China’s second-largest grid. We show that reaching carbon neutrality by 2060 is feasible; yet, doing so requires converting 40,000 square kilometers of land to support solar and wind as well as tapping on rivers to build ~32 gigawatts of hydropower. The impact of wind and solar development would span across multiple sectors, since crop and grassland constitute 90% of the identified sites. The construction of new dams may carry major externalities and trickle down to nearby countries, as most dams are located in transboundary rivers. Curbing the international footprint of this decarbonization effort would require additional investments (~12 billion United States dollars) in carbon capture technologies.
Pathological growth of cardiomyocytes (hypertrophy) is a major determinant for the development of heart failure, one of the leading medical causes of mortality worldwide. Here we show that the microRNA (miRNA)-212/132 family regulates cardiac hypertrophy and autophagy in cardiomyocytes. Hypertrophic stimuli upregulate cardiomyocyte expression of miR-212 and miR-132, which are both necessary and sufficient to drive the hypertrophic growth of cardiomyocytes. MiR-212/132 null mice are protected from pressure-overload-induced heart failure, whereas cardiomyocyte-specific overexpression of the miR-212/132 family leads to pathological cardiac hypertrophy, heart failure and death in mice. Both miR-212 and miR-132 directly target the anti-hypertrophic and pro-autophagic FoxO3 transcription factor and overexpression of these miRNAs leads to hyperactivation of pro-hypertrophic calcineurin/NFAT signalling and an impaired autophagic response upon starvation. Pharmacological inhibition of miR-132 by antagomir injection rescues cardiac hypertrophy and heart failure in mice, offering a possible therapeutic approach for cardiac failure. Heart failure is often a consequence of pathological growth of cardiomyocytes or cardiac hypertrophy. Here Ucar and colleagues report that the microRNAs miR-132 and miR-212 promote cardiac hypertrophy and inhibit autophagy in cardiomyocytes by downregulating the transcription factor FoxO3.
Abstract. The primary objective of this study is to develop a stochastic rainfall generation model that can match not only the short resolution (daily) variability but also the longer resolution (monthly to multiyear) variability of observed rainfall. This study has developed a Markov chain (MC) model, which uses a two-state MC process with two parameters (wet-to-wet and dry-to-dry transition probabilities) to simulate rainfall occurrence and a gamma distribution with two parameters (mean and standard deviation of wet day rainfall) to simulate wet day rainfall depths. Starting with the traditional MC-gamma model with deterministic parameters, this study has developed and assessed four other variants of the MC-gamma model with different parameterisations. The key finding is that if the parameters of the gamma distribution are randomly sampled each year from fitted distributions rather than fixed parameters with time, the variability of rainfall depths at both short and longer temporal resolutions can be preserved, while the variability of wet periods (i.e. number of wet days and mean length of wet spell) can be preserved by decadally varied MC parameters. This is a straightforward enhancement to the traditional simplest MC model and is both objective and parsimonious.
MicroRNAs (miRs) are important regulators of a wide range of biological processes. Antagomir studies suggest an implication of miR-132 in the functionality of the mammalian circadian clock. miR-212 and miR-132 are tandemly processed from the same transcript and share the same seed region. We found the clock modulator miR-132 and miR-212 to be expressed rhythmically in the central circadian clock. Consequently, mRNAs implicated in circadian functions may likely be targeted by both miRs. To further characterize the circadian role we generated mice with stable deletion of the miR-132/212 locus and compared the circadian behavior of mutant and wild-type control animals on two genetic backgrounds frequently used in chronobiological research, C57BL/6N and 129/Sv. Surprisingly, the wheel-running activity phenotype of miR mutant mice was highly background specific. A prolonged circadian free-running period in constant darkness was found in 129/Sv, but not in C57BL/6N miR-132/212 knockout mice. In contrast, in C57BL/6N, but not in 129/Sv miRNA-132/212 knockout mice a lengthened free-running period was observed in constant light conditions. Furthermore, miR-132/212 knockout mice on 129/Sv background exhibited enhanced photic phase shifts of locomotor activity accompanied by reduced light induction of Period gene transcription in the SCN. This phenotype was absent in miRNA-132/212 knockout mice on a C57BL/6N background. Together, our results reveal a strain and light regimen-specific function of miR-132/212 in the circadian clock machinery suggesting that miR-132 and miR-212 act as background-dependent circadian rhythm modulators.