To evaluate the detection performance of ozone lidars, the first comprehensive vertical ozone observation experiment in China was conducted at the Xilinhot National Climate Observatory in Inner Mongolia from August to December 2023. The ozone profiles and concentrations of four ozone lidars were systematically compared and assessed with ozone radiosonde measurements and ozone analyzer observations both at ground-based stations and on an Unmanned Aerial Vehicle. The results show that the relative deviations of four ozone lidars are less than 20% compared with ozone radiosonde measurements at a height between 150 and 400 m. Ozone lidars have better behavior between 400 m and 2000 m than the lower altitude, with the deviation within 10% and the correlation coefficient around 0.8. However, relative deviations of lidars increased with altitude above 2000 m. The surface ozone concentrations observed using ozone lidars agreed well with the ground-based ozone analyzer, especially during periods with ozone concentrations higher than 40 µg·m−3. The correlation coefficients for most models of ozone lidar are higher than 0.53. A further investigation of the influence of precipitation events on ozone lidar measurement has been conducted, which revealed that thick cloud layers, low cloud base, and an intensive precipitation event with large raindrop particles can result in high anomalies and reduce the inversion accuracy of the ozone lidar. During the experiment, four ozone lidars were assessed quantitatively according to the comprehensive performance, which could help to improve inversion algorithms and the system design of this promising technique.
Clouds are significant in the global radiation budget, atmospheric circulation, and hydrological cycle. However, knowledge regarding the observed climatology of the cloud vertical structure (CVS) over Beijing is still poor. Based on high-resolution radiosonde observations at Beijing Nanjiao Weather Observatory (BNWO) during the period 2010–2017, the method for identifying CVS depending on height-resolved relative humidity thresholds is improved, and CVS estimation by radiosonde is compared with observations by millimeter-wave cloud radar and ceilometer at the same site. Good consistency is shown between the three instruments. Then, the CVS climatology, including the frequency distribution and seasonal variation, is investigated. Overall, the occurrence frequency (OF) of cloudy cases in Beijing is slightly higher than that of clear-sky cases, and the cloud OF is highest in summer and lowest in winter. Single-layer clouds and middle-level clouds are dominant in Beijing. In addition, the average cloud top height (CTH), cloud base height (CBH), and cloud thickness in Beijing are 6.2 km, 4.0 km, and 2.2 km, respectively, and show the trend of reaching peaks in spring and minimums in winter. In terms of frequency distribution, the CTH basically resides below an altitude of 16 km, and approximately 43% of the CBHs are located at altitudes of 0.5–1.5 km. The cloud OF has only one peak located at altitudes of 4–8 km in spring, whereas it shows a trimodal distribution in other seasons. The height at which the cloud OF reaches its peak is highest in summer and lowest in winter. To the best of our knowledge, the cloud properties analyzed here are the first to elucidate the distribution and temporal variation of the CVS in Beijing from a long-term sounding perspective, and these results will provide a scientific observation basis for improving the atmospheric circulation model, as well as comparisons and verifications for measurements by ground-based remote sensing equipment.