Abstract The Puchezh‐Katunki impact structure, 40–80 km in diameter, located ~400 km northeast of Moscow (Russia), has a poorly constrained age between ~164 and 203 Ma (most commonly quoted as 167 ± 3 Ma). Due to its relatively large size, the Puchezh‐Katunki structure has been a prime candidate for discussions on the link between hypervelocity impacts and extinction events. Here, we present new 40 Ar/ 39 Ar data from step‐heating analysis of five impact melt rock samples that allow us to significantly improve the age range for the formation of the Puchezh‐Katunki impact structure to 192–196 Ma. Our results also show that there is not necessarily a simple relationship between the observed petrographic features of an impact melt rock sample and the obtained 40 Ar/ 39 Ar age spectra and inverse isochrons. Furthermore, a new palynological investigation of the postimpact crater lake sediments supports an age significantly older than quoted in the literature, i.e., in the interval late Sinemurian to early Pliensbachian, in accordance with the new radioisotopic age estimate presented here. The new age range of the structure is currently the most reliable age estimate of the Puchezh‐Katunki impact event.
Abstract Shocked zircon from impactites from the Mien impact structure, Sweden, has been investigated with the aim to date the impact event and correlate the degree of U–Pb age resetting with shock‐related microtextures. In situ U–Pb spot isotope analyses of granular and microporous–granular zircon grains from the impact melt rocks give an age of 120.0 ± 1.0 Ma. This essentially confirms the previous best estimate age of 122.4 ± 2.3 Ma, while also increasing precision on the Mien impact age. U–Pb isotope mapping shows that radiation damage likely explains the similar U–Pb age reset associated with different shock‐related microtextures. Microporous and some of the granular and microporous–granular domains yield higher U concentrations along with younger 238 U/ 206 Pb dates. Lower U contents with older 238 U/ 206 Pb dates are predominately observed in pristine domains. Due to the U‐decay, the zircon lattice is damaged, a process through which Pb can be lost. This would result in younger 238 U/ 206 Pb dates, as observed for the high U domains. As the zircon crystal lattices were locally weakened, metamictization possibly facilitated the development of microporous and granular textures during the impact event. Analyses of unshocked Mien zircon confirm that radiation damage already existed before impact. Lead loss from granular domains occurred through recrystallization and from microporous domains through Pb leaching by hydrothermal fluids. In addition, our study demonstrates the utility of combined U–Pb isotope mapping and spot analysis in unraveling the link between U–Pb resetting and shock‐related microtextures, the formation of which was in this case likely promoted by pre‐existing radiation damage.
Abstract Discordant U–Pb data of zircon are commonly attributed to Pb loss from domains with variable degree of radiation damage that resulted from α-decay of U and Th, which often complicates the correct age interpretation of the sample. Here we present U–Pb zircon data from 23 samples of ca. 1.7–1.9 Ga granitoid rocks in and around the Siljan impact structure in central Sweden. Our results show that zircon from rocks within the structure that form an uplifted central plateau lost significantly less radiogenic Pb compared to zircon grains in rocks outside the plateau. We hypothesize that zircon in rocks within the central plateau remained crystalline through continuous annealing of crystal structure damages induced from decay of U and Th until uplifted to the surface by the impact event ca. 380 Ma ago. In contrast, zircon grains distal to the impact have accumulated radiation damage at shallow and cool conditions since at least 1.26 Ga, making them vulnerable to fluid-induced Pb-loss. Our data are consistent with studies on alpha recoil and fission tracks, showing that annealing in zircon occurs at temperatures as low as 200–250 °C. Zircon grains from these samples are texturally simple, i.e., neither xenocrysts nor metamorphic overgrowths have been observed. Therefore, the lower intercepts obtained from regression of variably discordant zircon data are more likely recording the age of fluid-assisted Pb-loss from radiation-damaged zircon at shallow levels rather than linked to regional magmatic or tectonic events.