Abstract This study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.
On 13 December 2012, Chang'e-2 conducted a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 ± 120 meters from the asteroid's surface. The highest-resolution image, with a resolution of better than 3 meters, reveals new discoveries on the asteroid, e.g., a giant basin at the big end, a sharply perpendicular silhouette near the neck region, and direct evidence of boulders and regolith, which suggests that Toutatis may bear a rubble-pile structure. Toutatis' maximum physical length and width are (4.75 × 1.95 km) ±10%, respectively, and the direction of the +z axis is estimated to be (250 ± 5°, 63 ± 5°) with respect to the J2000 ecliptic coordinate system. The bifurcated configuration is indicative of a contact binary origin for Toutatis, which is composed of two lobes (head and body). Chang'e-2 observations have significantly improved our understanding of the characteristics, formation, and evolution of asteroids in general.
Abstract The alkali element K is moderately volatile and fluid mobile; thus, it can be influenced by both primary processes (evaporation and recondensation) in the solar nebula and secondary processes (thermal and aqueous alteration) in the parent body. Since these primary and secondary processes would induce different isotopic fractionations, K isotopes could become a potential tracer to distinguish them. Using recently developed methods with improved precision (0.05‰, 95% confidence interval), we systematically measured the K isotopic compositions and major/trace elemental compositions of chondritic components (18 chondrules, 3 CAIs, 2 matrices, and 5 bulks) in the carbonaceous chondrite fall Allende. Among all the components analyzed in this study, CAIs, which formed initially under high‐temperature conditions in the solar nebula and were dominated by nominally K‐free refractory minerals, have the highest K 2 O content (average 0.53 wt%) and have K isotope compositions most enriched in heavy isotopes (δ 41 K: −0.30 to −0.25‰). Such an observation is consistent with previous petrologic studies that show CAIs in Allende have undergone alkali enrichment during metasomatism. In contrast, chondrules contain lower K 2 O content (0.003–0.17 wt%) and generally lighter K isotope compositions (δ 41 K: −0.87‰ to −0.24‰). The matrix and bulks are nearly identical in K 2 O content and K isotope compositions (0.02–0.05 wt%; δ 41 K: −0.62 to − 0.46‰), which are, as expected, right in the middle of CAIs and chondrules. This strongly indicates that most of the chondritic components of Allende suffered aqueous alteration and their K isotopic compositions are the ramification of Allende parent‐body processing instead of primary nebular signatures. Nevertheless, we propose the small K isotope fractionations observed (< 1‰) among Allende components are likely similar to the overall range of K isotopic fractionation that occurred in nebular environment. Furthermore, the K isotope compositions seen in the components of Allende in this study are consistent with MC‐ICP‐MS analyses of the components in ordinary chondrites, which also show an absence of large (10‰) isotope fractionations. This is not expected as evaporation experiments in nebular conditions suggest there should be large K isotopic fractionations. Nevertheless, possible nebular processes such as chondrules back exchanging with ambient gas when they formed could explain this lack of large K isotopic variation.
Abstract Boulders are ubiquitously found on the surfaces of small rocky bodies in the inner solar system and their spatial and size distributions give insight into the geological evolution and collisional history of the parent bodies. Using images acquired by the Chang’e-2 spacecraft, more than 200 boulders have been identified over the imaged area of the near-Earth asteroid Toutatis. The cumulative boulder size frequency distribution (SFD) shows a steep slope of −4.4 ± 0.1, which is indicative of a high degree of fragmentation. Similar to Itokawa, Toutatis probably has a rubble-pile structure, as most boulders on its surface cannot solely be explained by impact cratering. The significantly steeper slope for Toutatis’ boulder SFD compared to Itokawa may imply a different preservation state or diverse formation scenarios. In addition, the cumulative crater SFD has been used to estimate a surface crater retention age of approximately 1.6 ± 0.3 Gyr.