Abstract The worldwide retreat of glaciers is causing a faster than ever increase in ice‐free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global‐scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice‐free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r‐ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K‐ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development.
The inventory of soil phosphorus (P) is subject to significant changes over time. The main primary form, bedrock‐derived apatite P, becomes progressively lost through leaching, or transformed into more immobile and less plant‐accessible, secondary organic and mineral forms. Here we studied the rejuvenating effect of dust deposition on soil P along an active dust flux gradient downwind of a braided river. Along the gradient, we measured soil P fractions to 50 cm depth of six Spodosols and one Inceptisol, supplemented by tree foliage P concentrations. While an increasing dust flux correlates with a twofold increase of foliar P and soil organic P along the gradient, apatite P declines from ~50 to 3 g m −2 and total P shows no response. Compared to dust‐unaffected Spodosols, depth distribution of total P becomes increasingly uniform and organic P propagates deeper into the soil under dust flux. Further, the effect of topsoil P eluviation attenuates due to higher organic P content and the zone of high apatite P concentrations associated with un‐weathered subsoil becomes progressively removed from the upper 50 cm. We interpret these patterns as being consistent with upbuilding pedogenesi and conclude that dust‐derived mineral P is assimilated in the organic surface horizon and does not reach the mineral soil. Dust‐derived mineral P is temporarily stored in the living biomass and returns to the soil with plant and microbial detritus as organic P, which is subsequently buried by further dust increments. We further conclude that (1) the efficiency of P fertilization of the ecosystem by dust accession is higher than through P advection in dust‐unaffected Spodosols and (2) organic P may serve as an important source of labile P in a high‐leaching environment.
Abstract Formation of mineral-organic associations is a key process in the global carbon cycle. Recent concepts propose litter quality-controlled microbial assimilation and direct sorption processes as main factors in transferring carbon from plant litter into mineral-organic associations. We explored the pathways of the formation of mineral-associated organic matter (MOM) in soil profiles along a 120-ky ecosystem gradient that developed under humid climate from the retreating Franz Josef Glacier in New Zealand. We determined the stocks of particulate and mineral-associated carbon, the isotope signature and microbial decomposability of organic matter, and plant and microbial biomarkers (lignin phenols, amino sugars and acids) in MOM. Results revealed that litter quality had little effect on the accumulation of mineral-associated carbon and that plant-derived carbon bypassed microbial assimilation at all soil depths. Seemingly, MOM forms by sorption of microbial as well as plant-derived compounds to minerals. The MOM in carbon-saturated topsoil was characterized by the steady exchange of older for recent carbon, while subsoil MOM arises from retention of organic matter transported with percolating water. Overall, MOM formation is not monocausal but involves various mechanisms and processes, with reactive minerals being effective filters capable of erasing chemical differences in organic matter inputs.
Evaluating conflicting theories about the influence of mountains on carbon dioxide cycling and climate requires understanding weathering fluxes from tectonically uplifting landscapes. The lack of soil production and weathering rate measurements in Earth's most rapidly uplifting mountains has made it difficult to determine whether weathering rates increase or decline in response to rapid erosion. Beryllium-10 concentrations in soils from the western Southern Alps, New Zealand, demonstrate that soil is produced from bedrock more rapidly than previously recognized, at rates up to 2.5 millimeters per year. Weathering intensity data further indicate that soil chemical denudation rates increase proportionally with erosion rates. These high weathering rates support the view that mountains play a key role in global-scale chemical weathering and thus have potentially important implications for the global carbon cycle.