Cu-slags are a by-product of pyrometallurgical processing and contain elevated concentrations of metallic elements that may be released during weathering. Hence, they may pose environmental risk and thus need to be properly disposed of. On the other hand, the high residual content of metals makes slags interesting as secondary resources for metal recovery. This review presents current knowledge about the chemical and phase composition of Cu-metallurgical slags and discusses environmental issues related to their disposal. Furthermore, it provides an overview of experimental approaches assessing environmental risk as well as recent achievements regarding the leaching and recovery of valuable metals from Cu-slags.
Ultramafic soils are characterized by low productivity due to the deficiency of macroelements and high content of Ni, Cr, and Co. Incorporation of ultramafic soils for agricultural and food production involves the use of fertilizers. Therefore, this study aims to find the soil additive that decreases the metallic elements uptake by plant using Brassica napus as an example. In this study, we evaluate the effect of manure (0.5 g N/kg of soil), humic acids (1 g of Rosahumus/1 dm
Granites sensu lato in the Sudetes intruded in several episodes during the Variscan orogeny recording different stages of crust and mantle evolution. Correlating precise ages with geochemistry of the Variscan granites provides information on the evolution of these sources within the Variscan orogen. The Variscan intrusive rocks from the Niemcza Zone (Bohemian Massif, Sudetes, SW Poland) include undeformed dioritic to syenitic rocks and magmatically foliated granodiorites. In this study we analysed low SiO2 (48–53 wt.%) monzodioritic rocks from Przedborowa and Koźmice. The monzodiorites contain late-magmatic zircons with ages of 341.8 ± 1.9 Ma for Przedborowa and 335.6 ± 2.3 Ma for Koźmice, interpreted as emplacement ages of the dioritic magmas. Older Przedborowa rocks are lower in K, Mg, Rb and Ni than the Koźmice rocks and similar compositional trend is also observed in the Central Bohemian Plutonic Complex. The implication is that the mantle underlying the Niemcza Zone became more enriched from ca. 342 to ca. 336 Ma, probably following the collision of the Saxothuringian and Moldanubian/Lugian domains. The magmatism related to the collision occurred ca. 12 Ma later than that in the Central Bohemian Plutonic Complex, but was accompanied by a similar change in magma chemistry from high-K (Przedborowa) to shoshonitic (Koźmice, Kośmin enclaves) and probably to ultrapotassic (Wilków Wielki)  
Ultramafic soils are in equal parts fascinating and dangerous. Developed on rocks derived predominately from the Earth's mantle and metamorphosed at the ocean floors, ultramafic soils form in the places where tectonic forces brought these rocks from mantle depths to the surface. As it is common in nature, both ultramafic rocks and soils are site-specific, and vary in character and composition; however, they have one thing in common, they are enriched in certain elements and three metals in particular form an "ultramafic" triad: Ni, Cr, and Co. These three metals are far from being human-friendly and strict legislative limits are established for maximum allowable concentrations of these metals in soils, but mostly in the case when the metals are of anthropogenic origin. However, ultramafic soils are a natural phenomenon where increased metal content is not the result of pollution, but rather referred as a peculiar geochemical background, therefore there is no reason for their remediation. At the same time, it is not that easy to actually find an ultramafic soil that does not overstep the limits (for the sake of this paper we use median world Regulatory Guidance Values - RGVs). Often, mobile Ni and Co concentrations are above the guidelines when doing tests to estimate the bioavailable fraction (EDTA and DTPA), and high concentrations of Ni are also commonly present in excluder plants (also edible ones). Also waters in ultramafic areas often exceed Ni and Cr(VI) limits. It is therefore expected that the ultramafic metals are present in the food chain and they might constitute a potential health risk. Thus, there is a need for additional research focused on assessment of the potential health consequences of chronic high exposure on naturally occurring Ni, Cr, and Co.
The aims: (1) to investigate the role of the in situ weathering of bedrock in providing substrate for soil formation; (2) to evaluate the aeolian contribution to the mountainous soils in the vicinity of thick loess cover; and (3) to determine the influence of aeolian silt on further soil development. The sampled sites were arranged along the slope toposequence, where an aeolian/silt admixture possibly occurred. Each soil catena started at the top of a hill and ended at its foot. Such an arrangement of the soil profiles ensured the tracking of loess thickness variations and detection of the depth of the residuum-derived materials. One reference soil profile, consisting of aeolian silt deposits, was made. The following soil properties were determined: pH, organic carbon content, soil texture, exchangeable acidity, exchangeable ions and geochemistry. In addition, thin sections were prepared from rock samples to confirm the type of bedrock present. The soils in the studied area were classified as Cambisols, Luvisols and Stagnosols, characterised by silt loam texture and a high content of elements indicating an aeolian silt contribution—Hf (7.4 to 14.8 ppm) and Zr (274.4 to 549.0 ppm). These values differ strongly from the residues typical of weathered quartzite, greywacke or catalasite substrates, which generally have low concentrations of Hf and Zr (0.7 to 7.0 ppm and 26.0 to 263 ppm, respectively). Based on the morphological, textural and geochemical data of the studied soils, three layers were distinguished, which show different inputs of aeolian silt: (1) an aeolian silt mantle; (2) a mixed zone in which loess was incorporated into the local material; and (3) a basal zone, free of the influence of aeolian silt. Based on the obtained results, a hypothetical pathway for soil formation in mountainous areas, influenced by aeolian silt admixing, was proposed. Our study demonstrates that the soils developed in the Opawskie Mountains are characterised by an aeolian silt influence. This differentiates them from weakly developed soils, which comprise materials formed during in situ weathering only. Materials originating from bedrock weathering did not play an independent role as the parent material for the studied pedons. Aeolian silt was admixed with already existing autochthonous substrates, or completely replaced them. This influence on the soil formation resulted in the occurrence of Luvisols, Stagnosols and Cambisols. Such soils cannot be formed from the weathering of quartzites and greywackes, which contribute to a less structure-forming medium.