Abstract. SCIAMACHY onboard ENVISAT (launched in 2002) enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4). In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS) measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON) sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling. It is shown that there are generally no significant differences between the carbon dioxide annual increases of SCIAMACHY and the assimilation system CarbonTracker (2.00 ± 0.16 ppm yr−1 compared to 1.94 ± 0.03 ppm yr−1 on global average). The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant for a subset of the analysed TCCON sites when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision (mean standard deviation of the differences) of about 2.2 ppm and a relative accuracy (standard deviation of the mean differences) of 1.1–1.2 ppm for monthly average composites within a radius of 500 km. For methane, prior to November 2005, the regional relative precision amounts to 12 ppb and the relative accuracy is about 3 ppb for monthly composite averages within the same radius. The loss of some spectral detector pixels results in a degradation of performance thereafter in the spectral range currently used for the methane column retrieval. This leads to larger scatter and lower XCH4 values are retrieved in the tropics for the subsequent time period degrading the relative accuracy. As a result, the overall relative precision is estimated to be 17 ppb and the relative accuracy is in the range of about 10–20 ppb for monthly averages within a radius of 500 km. The derived estimates show that the SCIAMACHY XCH4 data set before November 2005 is suitable for regional source/sink determination and regional-scale flux uncertainty reduction via inverse modelling worldwide. In addition, the XCO2 monthly data potentially provide valuable information in continental regions, where there is sparse sampling by surface flask measurements.
Abstract. The terrestrial biosphere is currently acting as a net carbon sink on the global scale, exhibiting significant interannual variability in strength. To reliably predict the future strength of the land sink and its role in atmospheric CO2 growth, the underlying biogeochemical processes and their response to a changing climate need to be well understood. In particular, better knowledge of the impact of key climate variables such as temperature or precipitation on the biospheric carbon reservoir is essential. It is demonstrated using nearly a decade of SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) nadir measurements that years with higher temperatures during the growing season can be robustly associated with larger growth rates in atmospheric CO2 and smaller seasonal cycle amplitudes for northern mid-latitudes. We find linear relationships between warming and CO2 growth as well as seasonal cycle amplitude at the 98% significance level. This suggests that the terrestrial carbon sink is less efficient at higher temperatures during the analysed time period. Unless the biosphere has the ability to adapt its carbon storage under warming conditions in the longer term, such a temperature response entails the risk of potential future sink saturation via a positive carbon-climate feedback. Quantitatively, the covariation between the annual CO2 growth rates derived from SCIAMACHY data and warm season surface temperature anomaly amounts to 1.25 ± 0.32 ppm yr−1 K−1 for the Northern Hemisphere, where the bulk of the terrestrial carbon sink is located. In comparison, this relationship is less pronounced in the Southern Hemisphere. The covariation of the seasonal cycle amplitudes retrieved from satellite measurements and temperature anomaly is −1.30 ± 0.31 ppm K−1 for the north temperate zone. These estimates are consistent with those from the CarbonTracker data assimilated CO2 data product, indicating that the temperature dependence of the model surface fluxes is realistic.
Abstract. An optimal estimation based retrieval scheme for satellite based retrievals of XCO2 (the dry air column averaged mixing ratio of atmospheric CO2) is presented enabling accurate retrievals also in the presence of thin clouds. The proposed method is designed to analyze near-infrared nadir measurements of the SCIAMACHY instrument in the CO2 absorption band at 1580 nm and in the O2-A absorption band at around 760 nm. The algorithm accounts for scattering in an optically thin cirrus cloud layer and at aerosols of a default profile. The scattering information is mainly obtained from the O2-A band and a merged fit windows approach enables the transfer of information between the O2-A and the CO2 band. Via the optimal estimation technique, the algorithm is able to account for a priori information to further constrain the inversion. Test scenarios of simulated SCIAMACHY sun-normalized radiance measurements are analyzed in order to specify the quality of the proposed method. In contrast to existing algorithms for SCIAMACHY retrievals, the systematic errors due to cirrus clouds with optical thicknesses up to 1.0 are reduced to values below 4 ppm for most of the analyzed scenarios. This shows that the proposed method has the potential to reduce uncertainties of SCIAMACHY retrieved XCO2 making this data product potentially useful for surface flux inverse modeling.
Abstract. Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases contributing to global climate change. SCIAMACHY onboard ENVISAT (launch 2002) was the first and is now with TANSO onboard GOSAT (launch 2009) one of only two satellite instruments currently in space whose measurements are sensitive to CO2 and CH4 concentration changes in the lowest atmospheric layers where the variability due to sources and sinks is largest. We present long-term SCIAMACHY retrievals (2003–2009) of column-averaged dry air mole fractions of both gases (denoted XCO2 and XCH4) derived from absorption bands in the near-infrared/shortwave-infrared (NIR/SWIR) spectral region focusing on large-scale features. The results are obtained using an upgraded version (v2) of the retrieval algorithm WFM-DOAS including several improvements, while simultaneously maintaining its high processing speed. The retrieved mole fractions are compared to global model simulations (CarbonTracker XCO2 and TM5 XCH4) being optimised by assimilating highly accurate surface measurements from the NOAA/ESRL network and taking the SCIAMACHY averaging kernels into account. The comparisons address seasonal variations and long-term characteristics. The steady increase of atmospheric carbon dioxide primarily caused by the burning of fossil fuels can be clearly observed with SCIAMACHY globally. The retrieved global annual mean XCO2 increase agrees with CarbonTracker within the error bars (1.80±0.13 ppm yr−1 compared to 1.81±0.09 ppm yr−1). The amplitude of the XCO2 seasonal cycle as retrieved by SCIAMACHY, which is 4.3±0.2 ppm for the Northern Hemisphere and 1.4±0.2 ppm for the Southern Hemisphere, is on average about 1 ppm larger than for CarbonTracker. An investigation of the boreal forest carbon uptake during the growing season via the analysis of longitudinal gradients shows good agreement between SCIAMACHY and CarbonTracker concerning the overall magnitude of the gradients and their annual variations. The analysis includes a discussion of the relative uptake strengths of the Russian and North American boreal forest regions. The retrieved XCH4 results show that after years of stability, atmospheric methane has started to rise again in recent years which is consistent with surface measurements. The largest increase is observed for the tropics and northern mid- and high-latitudes amounting to about 7.5±1.5 ppb yr−1 since 2007. Due care has been exercised to minimise the influence of detector degradation on the quantitative estimate of this anomaly.
Abstract. Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO2, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4–2.5 ppm). When looking at the seasonal relative accuracy (SRA, variability of the bias in space and time), none of the algorithms have reached the demanding < 0.5 ppm threshold. For XCH4, the precision for both SCIAMACHY products (50.2 ppb for IMAP and 76.4 ppb for WFMD) fails to meet the < 34 ppb threshold for inverse modelling, but note that this work focusses on the period after the 2005 SCIAMACHY detector degradation. The GOSAT XCH4 precision ranges between 18.1 and 14.0 ppb. Looking at the SRA, all GOSAT algorithm products reach the < 10 ppm threshold (values ranging between 5.4 and 6.2 ppb). For SCIAMACHY, IMAP and WFMD have a SRA of 17.2 and 10.5 ppb, respectively.
Abstract. This study presents results from the European Centre for Medium-Range Weather Forecasts (ECMWF) carbon dioxide (CO2) analysis system where the atmospheric CO2 is controlled through the assimilation of column-averaged dry-air mole fractions of CO2 (XCO2) from the Greenhouse gases Observing Satellite (GOSAT). The analysis is compared to a free-run simulation (without assimilation of XCO2), and they are both evaluated against XCO2 data from the Total Carbon Column Observing Network (TCCON). We show that the assimilation of the GOSAT XCO2 product from the Bremen Optimal Estimation Differential Optical Absorption Spectroscopy (BESD) algorithm during the year 2013 provides XCO2 fields with an improved mean absolute error of 0.6 parts per million (ppm) and an improved station-to-station bias deviation of 0.7 ppm compared to the free run (1.1 and 1.4 ppm, respectively) and an improved estimated precision of 1 ppm compared to the GOSAT BESD data (3.3 ppm). We also show that the analysis has skill for synoptic situations in the vicinity of frontal systems, where the GOSAT retrievals are sparse due to cloud contamination. We finally computed the 10-day forecast from each analysis at 00:00 UTC, and we demonstrate that the CO2 forecast shows synoptic skill for the largest-scale weather patterns (of the order of 1000 km) even up to day 5 compared to its own analysis.