Abstract Understanding dendritic crystallization is key to obtaining petrological information about rapid crystallization events. Clinopyroxene dendrites from a basaltic rock fulgurite from Nagpur, India, exhibit curved branches with corresponding lattice rotation that exceeds 180° for some branches. This paper combines crystallographic orientation mapping with microstructural observations and compositional information to determine the dendrites’ 3-D morphology and their bending mechanism. Dendrites exhibit a network of branches in the (010) plane, following either {001}* (normal to {001} planes, strong lattice curvature) or < 10–1 > (weak lattice curvature). Three or more orders of branches are observed in the (010) plane, alternating between {001}* and < 10–1>. Side branches with weak lattice curvature extend sub-perpendicular to the (010) plane, following either {021}* (sprouting from {001}* branches) or < 12–1 > (from <10–1 > branches) and defining curved ‘ribbons’ containing their respective central branch. All branches rotate about [010], with a consistent rotation sense regardless of elongation direction in sample or crystal coordinates. Bending must therefore be caused by local asymmetric thermal and compositional fields in the melt, generated by dendritic growth itself, not by sample-scale compositional, thermal or mechanical gradients. The most likely cause of bending is asymmetric distribution of melt supersaturation around branch tips, related to unequal growth rates perpendicular to different facets. Lattice rotation is inferred to occur via preferential incorporation of high densities of [001] (100) edge dislocations of one sign. High inferred dislocation densities imply that the preservation of bent dendrites requires rapid quenching. Higher inferred degree of undercooling (based on microstructural observations) correlates with greater lattice curvature. Bent dendrites can thus potentially be used to deliver information about spatial variations in degree of undercooling and place limits on the history of a sample after dendritic crystallization. Finally, finding lattice rotation exclusively about [010] is a new criterion to identify cryptic dendritic growth stages in euhedral crystals.
Abstract Polycrystalline calcite was deformed to high strain at room-temperature and confining pressures of 1–4 GPa using high-pressure torsion. The high confining pressure suppresses brittle failure and allows for shear strains >100. The post-deformation microstructures show inter- and intragranular cataclastic deformation and a high density of mechanical e $$ \left\{01\overline{1}8\right\} $$ 011¯8 twins and deformation lamellae in highly strained porphyroclasts. The morphologies of the twins resemble twin morphologies that are typically associated with substantially higher deformation temperatures. Porphyroclasts oriented unfavorably for twinning frequently exhibit two types of deformation lamellae with characteristic crystallographic orientation relationships associated with calcite twins. The misorientation of the first deformation lamella type with respect to the host corresponds to the combination of one r $$ \left\{10\overline{1}4\right\} $$ 101¯4 twin operation and one specific f $$ \left\{01\overline{1}2\right\} $$ 011¯2 or e $$ \left\{01\overline{1}8\right\} $$ 011¯8 twin operation. Boundary sections of this lamella type often split into two separated segments, where one segment corresponds to an incoherent r $$ \left\{10\overline{1}4\right\} $$ 101¯4 twin boundary and the other to an f $$ \left\{01\overline{1}2\right\} $$ 011¯2 or e $$ \left\{01\overline{1}8\right\} $$ 011¯8 twin boundary. The misorientation of the second type of deformation lamellae corresponds to the combination of specific r $$ \left\{10\overline{1}4\right\} $$ 101¯4 and f $$ \left\{01\overline{1}2\right\} $$ 011¯2 twin operations. The boundary segments of this lamella type may also split into the constituent twin boundaries. Our results show that brittle failure can effectively be suppressed during room-temperature deformation of calcite to high strains if confining pressures in the GPa range are applied. At these conditions, the combination of successive twin operations produces hitherto unknown deformation lamellae.
This study presents microstructural investigations of limestone fault rocks formed in a shallow crustal (∼4 km), compressional segment of the Salzachtal-Ennstal-Mariazell-Puchberg fault in the Northern Calcareous Alps. The investigated fault strand accommodated sinistral slip of several hundreds of meters. Our data show that fault rocks underwent various stages of evolution including the emplacement of fluidized clays at an early frictional stage of faulting overprinted by intense veining and stylolite formation. Increased calcite dissolution along clay-carbonate boundaries is resulting in the development of cleavage domains. Such clay-enriched stylolites and cleavage domains localized further deformation, producing a network of small-scale clay-rich shear zones of up to 1 mm thickness anastomosing around carbonate microlithons, varying from several mm down to some μm in size. Beside pressure-solution processes, calcite microlithons show microstructures typical for crystal-plastic deformation, including deformation twinning, undulose extinction and the development of subgrains. The investigated fault rocks are excellent examples for the interplay of frictional, pressure solution and crystal plastic deformation processes under low-temperature conditions.
Abstract. This study examines finite deformation patterns of zircon grains from high-temperature natural shear zones. Various zircon-bearing rocks were collected in the Western Tauern Window, eastern Alps, where they were deformed under amphibolite facies conditions, and in the Ivrea–Verbano Zone (IVZ), southern Alps, where deformation is related with granulite-facies metamorphism. Among the sampled rocks are granitic orthogneisses, metalamprophyres and paragneisses, all of which are strongly deformed. The investigated zircon grains ranging from 10 to 50 μm were studied in situ using a combination of scanning electron microscope (SEM) techniques, backscattered electron (BSE) imaging, forward-scattered electron (FSE) imaging, cathodoluminescence (CL) imaging, and crystallographic orientation mapping by electron backscatter diffraction (EBSD), as well as micro-Raman spectroscopy. Energy-dispersive X-ray spectrometry (EDS) was applied to host phases. Microstructural analysis of crystal-plastically deformed zircon grains was based on high-resolution EBSD maps. Three general types of finite lattice distortion patterns were detected: type (I) is defined by gradual bending of the zircon lattice with orientation changes of about 0.6–1.8° per micrometer without subgrain boundary formation. Cumulative grain-internal orientation variations range from 7 to 25° within single grains. Type (II) represents local gradual bending of the crystal lattice accompanied by the formation of subgrain boundaries that have concentric semicircular shapes in 2-D sections. Cumulative grain-internal orientation variations range from 15 to 40° within single grains. Type (III) is characterized by formation of subgrains separated by a well-defined subgrain boundary network, where subgrain boundaries show a characteristic angular closed contour. The cumulative orientation variation within a single grain ranges from 3 to 10°. Types (I) and (II) predominate in granulite facies rocks, whereas type (III) is restricted to the amphibolite facies rocks. The difference in distortion patterns is controlled by strain rate and by ratio between dislocation formation and dislocation motion rates, conditioned by the amount of differential stress. Investigated microstructures demonstrate that misorientation axes are usually parallel to the < 001 > and < 100 > crystallographic directions; dominant slips are < 010 > {001}, < 010 > {100} and < 001 > {010}, whereas in some grains cross-slip takes place. This study demonstrates that activation of energetically preferable slip systems is facilitated if zircon grain is decoupled from the host matrix and/or hosted by a soft phase.